Phenolic Constituents, Anti-Inflammatory and Antidiabetic Activities of *Cyperus laevigatus* L.

Abdelsamed Ibrahim Elshamy\(^1,5\)*, Mohamed El-Shazly\(^2\), Yomna Mahmoud Yassine\(^1\), Mona Anwar El-Bana\(^3\), Abdel-Razik Farrag\(^4\), Mahmoud Ibrahim Nassar\(^1\), Abdel Nasser Singab\(^2\), Masaaki Noji\(^2\), Akemi Umeyma\(^2\)

\(^1\)Natural Compounds Chemistry Department, National Research Centre, 33 El Bohouh st., Dokki, Giza, 12622, EGYPT.
\(^2\)Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, EGYPT.
\(^3\)Medical Biochemistry Department, National Research Centre, 33 El Bohouh st., Dokki, Giza, 12622, EGYPT.
\(^4\)Department of Pathology, National Research Centre, 33 El Bohouh st., Dokki, Giza, PO. Box 12622, EGYPT.
\(^5\)Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, JAPAN.

Correspondence
Dr. Abdelsamed I. Elshamy
Natural Compounds Chemistry, Department, National Research Centre, 33 El Bohouh st., Dokki, Giza, 12622, EGYPT.
& Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, JAPAN.
Phone no: +2023371615
E-mail: elshamyanc@yahoo.com

ABSTRACT
Background: *Cyperus* species are well known traditional plants and used for several diseases around the world. **Aim of the Study:** Our study aimed to identification of the phenolic constituents in addition to evaluation of different extracts of *Cyperus laevigatus* L as antioxidant, anti-inflammatory and anti-diabetic agents. **Materials and Methods:** The phenolic constituents were identified using spectroscopic techniques. The antioxidant activity was evaluated using in vitro DPPH assay. Total extract, methanol and EtOAc fractions were evaluated for their anti-inflammatory activity using RAW 264.7 macrophages assay. Antidiabetic activity of the total extract was examined biochemically and histopathologically using streptozotocin-induced diabetic rats. **Results:** A new flavone, chrysoeriol 7-O-β-D-glucopyranosyl-(1→4)glucopyranoside (1), along with seven knowns (2-8) were isolated from *Cyperus laevigatus* L. The structures of isolated compounds were established depending upon 1D, 2D-NMR and HR-ESI-MS. The MeOH and EtOAc fractions exhibited significant antioxidant activity while the isolated flavonoids exhibited from moderate to weak antioxidant activity. The total extract, MeOH and EtOAc fractions exhibited significant anti-inflammatory activity using RAW 264.7 macrophages model by decreasing of NO accumulation by 76 – 66% and 84 – 67%, of the original accumulation values with increasing concentrations in comparison with the reference drug, dexamethasone. The total extract exhibited antidiabetic activity in streptozotocin-induced diabetic rats and this effect was manifested by decreasing serum levels of glucose, glucagon and NO. It also increased level of insulin and promoted paraoxonase activity. **Conclusion:** These results proved that this plant may be multiple sources for medicinal natural drugs especially for anti-inflammatory and antidiabetic.

Key words: *Cyperus laevigatus*, New Flavone, Antioxidant, Anti-Inflammatory, Antidiabetic.

INTRODUCTION

Cyperaceae is a largest family in the monocotyledons that includes more than 100 genera. *Cyperus* genus is the largest genus in this family that contains more than 600 species.\(^1\) *Cyperus* species are widely used as weeds in traditional medicines.\(^2\) In 1983, Buolus reported that *Cyperus* species were traditionally used as an emollient to treat analgesic, diuretic, carminative and others.\(^3\) Pharmacological studies on *Cyperus* sp. indicated a myriad of biological effects such as anti-inflammatory, hepatoprotective, gastroprotective, anti-malarial and anti-diabetic activities.\(^4-7\) Several secondary metabolites were reported from *Cyperus* sp. including quinones, flavonoids, sesquiterpenes, steroids and essential oils.\(^8-10\) Herein we report the phenolic constituents of the aerial parts of *Cyperus laevigatus* (Family: Cyperaceae) as well as the pharmacological effects of the different extracts and isolated compounds.

MATERIALS AND METHODS

General Experimental procedures

Optical rotation was measured using JASCO P1020 polarimeter (JASCO International Co. Ltd., Tokyo, Japan). NMR spectra were recorded on JEOL AL-400 NMR spectrometer (JEOL Inc., Tokyo, Japan). HR-ESI-MS were recorded by a Shimadzu LC-MS-IT-TOF-MS spectrometer (Shimadzu Inc., Kyoto, Japan). An OMM 7070E Shimadzu visible recording model UV 200 and 240 spectrophotometers (Shimadzu Inc., Kyoto, Japan) were used for UV spectra.

Plant material

Aerial parts of *Cyperus laevigatus* L., were collected from Baltim, Kafir Elsheikh, Egypt, in April 2013 and kindly identified by Assoc. Prof. Ahmed M. Abdel Gawad. A voucher specimen (PHG-P-CL179) was deposited in Ain Shams University herbarium, Cairo, Egypt.
Extraction and isolation

Air-dried powder aerial parts of *C. laevigatus* (2.0 kg) were extracted by 70% MeOH, filtered, and dried under vacuum to give dark black gum (85.0 gm). The dry extract was successively fractionated using *n*-hexane (12.0), CHCl₃ (10.0), EtOAc (11.0) and MeOH (52.0), respectively. The MeOH fraction was subjected to polyamide CC and eluted with H₂O: EthOH in gradient afforded 8 major fractions (CL-1:CL-8). Fraction CL-3 (160.0 mg; 25% MeOH) was subjected to preparative paper chromatography that afforded two subfractions CL-3-A (112 mg; Rf: 0.4 AcOH) and (B; 43 mg; Rf: 0.65 AcOH). Subfractions CL-3-B was eluted on Sephadex LH-20 by 40% MeOH affor med compound 1 (8.3 mg). The other seven flavonoids (2-8) were purified using different chromatographic techniques such as preparative paper and Sephadex LH-20 column. Complete acid hydrolysis followed by PC investigation was preceded. ¹¹

Spectroscopic data of new flavonoid (1)

Yellow amorphous solid (8 mg), \([\alpha]_D^{25} = -16^\circ (c 0.01, MeOH)\), UV λ max (MeOH): 208, 266, 347; NaOAc: 213, 260, 348, 368; + Boric acid: 215, 258, 348; AlCl₃: 211, 279, 306, 355.4; + HCl: 216.2, 277.2, 300.8, 347.4; H₂BO₃: 209.2, 269.6, 336.6; +NaOAc: 221.8, 270.8, 334.8. HR-ESI-MS m/z: 689.6365 [M+Na]+, ESI-MS m/z [M-H]-: 666.1. 'H- (400 MHz); ¹³C- (100 MHz; DMSO-d₆) NMR (see Table 1).

Antioxidant activity of *C. laevigatus* extracts

The antioxidant activity of the different extracts of *C. laevigatus* aerial parts along with the isolated flavonoids 1-8 were evaluated in terms of DPPH radical-scavenging ability, as described before ¹⁶ in a comparing with a reference drug, ascorbic acid.

Anti-inflammatory activity of different extracts of *C. laevigatus*

The anti-inflammatory of total extract, MeOH and EtOAc fractions was evaluated at different concentrations (12.5, 25, 50 and 100 µg/ml) using LPS-stimulated RAW264.7 macrophages model with a reference drug, dexamethasone as described previously. ¹⁵

Cell culture

Raw murine macrophages (RAW 264.7) were purchased from the American Type Culture collections and cultured in RPMI-1640 supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, containing 100 U/mL penicillin G sodium, 100 U/mL streptomycin sulphate, and 250 ng/ml amphotericin B. Cells were maintained in humidified air containing 5% CO₂ at 37 °C (Cambrex BioScience, Copenhagen, Denmark).

MTT cell viability assay

The mitochondrial-dependent reduction of MTT to formazan was used to measure cell respiration as an indicator of cell viability. ¹⁵ Cells (0.5 × 10⁶ cells/ well) in serum-free media were plated in a flat bottom 96-well microplate, and treated with 20 µL of different concentrations of the tested samples for 24 h at 37 °C, in a humidified 5% CO₂ atmosphere. After incubation, the media were removed and 40 µL MTT solution / well was added and incubated for an additional 4 h. MTT crystals were solubilized by adding 180 µL of acidified isopropanol/well and the plate was shocked at room temperature, followed by photometric determination of the absorbance at 570 nm using 96 wells microplate ELISA reader.

Inhibition of nitric oxide (NO) production

Raw murine macrophages (RAW 264.7) were seeded in 96-well plates at 0.5 × 10⁶ cells / well for 2 h in RPMI without phenol red. The cells were stimulated with LPS with final concentrations of 10 µg/mL. The stimulated cells after 2 extra h were treated with serial concentrations of the tested samples, dexamethasone (50 µg/mL) or left with the LPS alone. Untreated cells were used as a negative control. ¹⁵ Nitrite accumulation was used as an indicator of NO production using a microplate assay based on the Griess reaction. In each well of flat bottom 96 well-microplates, 40 µL of freshly prepared Griess reagent was mixed with 40 µL cell supernatant or different concentrations of sodium nitrite ranging from 0-100 µmol/L. The plate was incubated for 10 min in the dark and the absorbance of the mixture at 540 nm was determined using the microplate ELISA reader. The amount of nitrite in the media was calculated from NO standard curve.

Anti-diabetic activity of total alcoholic extract of *C. laevigatus*

Chemicals and animals

Streptozotocin (STZ) was purchased from Sigma Chemical Co. St. Louis, MO, USA. The study was conducted on 60 adult albino rats (200-210 g) (National Research Centre (NRC), Dokki, Giza, Egypt). Rats were performed in accordance with the Ethics Committee of the NRC. Rats were divided into 4 groups (15 rats in each) as follow: control group, rats received intragastric *C. laevigatus* MeOH fraction (50 mg/kg b.w. day) dissolved in distilled water, Diabetic group, diabetes were induced by single subcutaneous injection of streptozotocin (50 mg/kg b.w.) The animals were considered diabetic if fasting glucose level was 200 mg/dL after 48 hours of the injection, treated group, diabetic rats received intragastric *C. laevigatus* total extract (50 mg/kg b. w. day). ¹⁴

Biochemical Analysis

Serum glucose was performed according to the method of Passing, 1983. ¹⁵ Serum glucagon and insulin were performed according to previous reported methods. ¹⁵ NO was determined according to the reported method where nitrite, stable end product of nitric oxide radical, is mostly used as indicator for the production of NO. The activity of paraoxonase was measured spectrophotometrically in supernatants using phenyl acetate as the substrate. In this assay, aryl esterase/paraoxonase catalyzes the cleavage of phenyl acetate, resulting in phenol formation. The rate of phenol formation is measured by monitoring the increase in absorbance at 270 nm at 25 °C. Absorbance at 270 nm was taken every 15 s for 120 s using UV Spectrophotometer. ¹⁴

Histopathological evaluation

The pancreatic tissues were dissected out immediately, fixed in 10% normal formalin dehydrated in series of alcohol and then to xylene each for 1 h followed by embedding in wax at 60°C. Paraffin blocks of the tissues were sectioned to 5 μm thickness. The sections were then stained with hematoxylin and eosin for histopathological evaluation. ¹⁹

Statistical analysis

All data were expressed as mean ± standard error. Data were analyzed using one-way ANOVA using SPSS (Version 16). Duncan’s new multiple-range test was used to assess differences between means. A significant difference was considered at the level of P < 0.05.

RESULTS AND DISCUSSION

A new acylated flavone diglucoside namely, chrysoeriol 7-O-β-(6″-O-acetyl-β-D-glucopyranosyl)-(1→4) glucopyranoside (1) and several knowns, apigenin (2), apigenin 7-O-β-glucopyranoside (3), luteolin (4), luteolin 7-O-β-glucopyranoside (5), chrysoeriol (6), chrysoeriol 7-O-β-glucopyranoside (7), and tricin (8) were isolated for the first time from the aerial parts of *C. laevigatus* (Figure 1A). The structures
of isolated compounds were established using spectroscopic methods, including UV, 1D, 2D-NMR and HR-ESI-MS.

UV spectroscopic data of compound (1) indicated a flavone with free 5 and 4'-hydroxyl groups. HR-ESI-MS spectrum showed a molecular ion peak [M+Na]+ at m/z 689.6365, corresponding to the molecular formula of C_{30}H_{28}O_{14}. The 1H-NMR spectral data (Table 1) showed a downfield shift of the anomeric proton at δ_H 5.11 (d, J = 7.2 Hz). The spectrum also showed two anomeric carbons at δ_C 99.8 (C-1''), 75.3 (C-2''), 73.2 (C-3''), 73.5 (C-4''), 74.2 (C-5''), 79.5 (C-6''), and 63.3 (C-6'''), two anomic carbons at δ_C 98.9 (C-1'''), 100.0 (C-2'''). The assignment of the protonated carbons was established by HSQC experiment. The 7-O-glucosidic linkage was confirmed by HMBC correlation of the anomeric proton at δ_H 5.11 (d, J = 7.2 Hz) and C-7 at δ_C 163.4. Ten carbon signals for two glucosyl moieties were observed at δ_C 73.2 (C-2''), 73.5 (C-3''), 79.5 (C-4''), 74.2 (C-5''), 62.3 (C-6''), 75.3 (C-2'''), 76.6 (C-3''''), 72.1 (C-4''''), 73.5 (C-5'''), 63.3 (C-6''''), and 63.2 (C-6''''').

Table 1: 1H- (400 MHz) and 13C-NMR (100 MHz) of compound 1 (DMSO-d6).

<table>
<thead>
<tr>
<th>Position</th>
<th>1H-NMR</th>
<th>13C-NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aglycon</td>
<td>2</td>
<td>164.9</td>
</tr>
<tr>
<td>3</td>
<td>6.71 s</td>
<td>104.8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>182.3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>161.5</td>
</tr>
<tr>
<td>6</td>
<td>6.41 d (J = 2.0 Hz)</td>
<td>99.9</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>163.4</td>
</tr>
<tr>
<td>8</td>
<td>6.77 d (J = 2.0 Hz)</td>
<td>94.9</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>157.3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>105.6</td>
</tr>
<tr>
<td>1'</td>
<td></td>
<td>121.5</td>
</tr>
<tr>
<td>2'</td>
<td>7.34 s</td>
<td>113.8</td>
</tr>
<tr>
<td>3'</td>
<td></td>
<td>148.6</td>
</tr>
<tr>
<td>4'</td>
<td></td>
<td>146.2</td>
</tr>
<tr>
<td>5'</td>
<td>6.9 d (J = 8.0 Hz)</td>
<td>116.4</td>
</tr>
<tr>
<td>6'</td>
<td>7.42 d (J = 8.0 Hz)</td>
<td>119.5</td>
</tr>
<tr>
<td>OCH_3</td>
<td>3.91 s</td>
<td>56.1</td>
</tr>
<tr>
<td>7-O-Glc</td>
<td>1''</td>
<td>5.11 d (J = 7.2 Hz)</td>
</tr>
<tr>
<td>2''</td>
<td></td>
<td>73.2</td>
</tr>
<tr>
<td>3''</td>
<td></td>
<td>73.5</td>
</tr>
<tr>
<td>4''</td>
<td></td>
<td>79.5</td>
</tr>
<tr>
<td>5''</td>
<td>3.21 – 3.65</td>
<td>74.2</td>
</tr>
<tr>
<td>6''</td>
<td></td>
<td>62.3</td>
</tr>
<tr>
<td>4'-Glc-O-Glc</td>
<td>1'''</td>
<td>5.08 d (J = 7.2 Hz)</td>
</tr>
<tr>
<td>2'''</td>
<td></td>
<td>75.3</td>
</tr>
<tr>
<td>3'''</td>
<td></td>
<td>76.6</td>
</tr>
<tr>
<td>4'''</td>
<td></td>
<td>72.1</td>
</tr>
<tr>
<td>5'''</td>
<td>3.16 – 4.11</td>
<td>73.5</td>
</tr>
<tr>
<td>6'''</td>
<td></td>
<td>63.3</td>
</tr>
<tr>
<td>OCH_3</td>
<td>3.91 s</td>
<td>56.7</td>
</tr>
<tr>
<td>5'-Acetate</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>CCOOCH_3</td>
<td>2.15 br s</td>
<td>21.1</td>
</tr>
</tbody>
</table>

*All assignments are based on 1D and 2D measurements (HMBC, HSQC, COSY).
Table 2: Antioxidant activity of C. laevigatus extracts and isolated flavonoids (1-8).

<table>
<thead>
<tr>
<th>Tested sample</th>
<th>DPPH assay IC₅₀ (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-hexane fraction</td>
<td>76.98±2.69</td>
</tr>
<tr>
<td>EtOAc fraction</td>
<td>57.58±1.93</td>
</tr>
<tr>
<td>MeOH fraction</td>
<td>24.28±0.67</td>
</tr>
<tr>
<td>Compd 1</td>
<td>65.93±1.57</td>
</tr>
<tr>
<td>Compd 2</td>
<td>28.78±1.21</td>
</tr>
<tr>
<td>Compd 3</td>
<td>34.12±0.98</td>
</tr>
<tr>
<td>Compd 4</td>
<td>26.54±1.03</td>
</tr>
<tr>
<td>Compd 5</td>
<td>31.19±1.14</td>
</tr>
<tr>
<td>Compd 6</td>
<td>33.76±0.87</td>
</tr>
<tr>
<td>Compd 7</td>
<td>52.62±0.65</td>
</tr>
<tr>
<td>Compd 8</td>
<td>58.44±1.74</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>1.85±0.12</td>
</tr>
</tbody>
</table>

Antioxidant activity

The total extract and MeOH fractions showed moderate DPPH radical scavenging activity with IC₅₀ 23.39±0.72 and 24.28±0.56, respectively but EtOAc, and n-hexane showed weak activity with IC₅₀ 57.89±0.71, and 76.98±0.73, respectively. Also the isolated flavonoids exhibited from moderate to weak antioxidant activity by the order of compound 4>2>5>6>3>7>8>1 (Table 2). The moderate antioxidant activity of both the total extract and MeOH fraction was attributed to the high flavonoid content. It was reported that flavonoids possess antioxidant activity especially luteolin derivatives and methoxylated flavonoids. The DPPH reaction mechanism with the compounds that exhibited activity depending upon the free OH groups in B-ring, so the flavons exhibited more activity that the flavons 7-O-glycosides.

Anti-inflammatory activity

Cytotoxicity results confirmed that the tested extracts are safe on RAW264.7 macrophages with different concentrations (12.5, 25, 50 and 100 µg/ml). The total extract (12.5, 25, 50, and 100 µg/ml) and MeOH fraction (12.5, 25, and 50 µg/ml) decreased NO% accumulation as the concentration increased reaching 76 - 66% and 84 - 67%, respectively. Also, the EtOAc fraction (12.5, 25, and 50 mg) decreased the NO% accumulation with concentration increased with values ranging from 77 - 66%. The results of the anti-inflammatory assay suggested that the total, MeOH and EtOAc extracts exhibited potent activity at different concentrations and the results were comparable with the reference drug, dexamethasone (Figure 2). A strong correlation has been always noticed between chemical constituents and herbal biological activities. By the same analogy, the anti-inflammatory activity of C. laevigatus can be correlated to its chemical constituents. The phytochemical study of this plant elucidated that it is rich with bioactive compounds. Luteolin, its methoxylated and glycosides derivatives inhibited the NO production and iNOS expression in LPS-stimulated BV-2 microglial cells.

Antidiabetic activity of total extract

Cyperus laevigatus aerial parts total extract did not exhibit any obvious toxic symptoms or mortality in rats up to 5000 mg/kg b.w. after 14 days.
Biochemical markers in the present work exhibited that the diabetic group treated with *C. laevigatus* extract showed a decrease in the glucose, glucagon, and NO serum levels and promote serum insulin and paraoxonase levels. Zhang et al. 2010\(^7\) reported that flavonoids exhibited anti-diabetic activity by decreasing fasting blood glucose (FBG) and glucagon serum levels while increasing insulin serum levels (Figure 3). Histological examination of the pancreas of the control and extract treated rats indicated normal architecture (Figure 4-A; B). The islets of Langerhans found in the pancreatic tissue were round in shape with normal cell lining. The interlobular ducts were surrounded with the supporting tissue. These results were consistent with Jarral et al. 2013\(^8\) that found that beta-cells comprise the major islets’ cells of rat’s pancreas.

In the diabetic rats, the pancreas showed a decrease in the pancreatic islet size, atrophy, vacuolation, and connective tissue invasion in the parenchyma of the pancreatic islets. The sections revealed a reduced pancreatic beta-cell numbers compared to the control group (Figure 4-C). STZ-induced diabetes may be due to the selective destroying of pancreatic beta-cells, which is responsible for the insulin production from endocrine cells.\(^9\) The pancreas of the diabetic rats treated with *C. laevigatus* extract showed dramatic suppression of all abnormal histological changes as compared to the diabetic group (Figure 4-D).

The pancreas of the diabetic rats treated with *C. laevigatus* extract showed dramatic suppression of all abnormal histological changes. Regarding the mechanism by which *C. laevigatus* can improve beta-cells, researchers found that flavonoids, flavonoid glycosides and phenolic acids exhibited a strong contribution as antioxidant agents that can regenerate the changes in the morphology of beta-cells.\(^10-11\)

CONCLUSION

A new flavonoid, chrysoeriol 7-O-β-(6′′-O-acetyl-β-D-glucopyranosyl)-(1→4) glucopyranoside (1), and seven knowns (2-8) were isolated and identified from aerial parts of *C. laevigatus* alcoholic extract. The different extracts and isolated compounds exhibited from moderate to low antioxidant activity. The total alcoholic extract, MeOH and EtOAC fractions exhibited significant anti-inflammatory activity using by decreasing of NO accumulation in comparison with dexamethasone as a reference drug using LPS-stimulated RAW 264.7 macrophages model. The MeOH fraction exhibited antidiabetic activity by decreasing levels of glucose, glucagon and NO along with increasing level of insulin and promoted paraoxonase activity in streptozotocin-induced diabetic rats.

ACKNOWLEDGEMENT

This work was supported by the research project of the National Research Centre (Project ID: 10010303) and the Faculty of Pharmaceutical Science; Tokushima Bunri University.

CONFLICT OF INTEREST

The authors declare no conflict of interests.

ABBREVIATION USED

- DPPH: 2,2-diphenyl-1-picrylhydrazyl
- RAW 264.7: Mouse RAW-264.7
- Cell lines: 1D, 2D-NMR: one and two dimensional nuclear magnetic resonance; NO: Nitric Oxide; PC: Paper Chromatography; MTX: (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide.

REFERENCES

15. Passing H, and Bablok PH. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry.
Elshamy et al.: Phytochemical and biological profile of Cyperus laevigatus

Graphical Abstract

Summary

- Isolation and identification of a new flavonoid along with 7 knowns from aerial parts of C. laevigatus.
- Evaluation of antioxidant of the isolated flavonoids.
- Evaluation of anti-inflammatory of the different solvent successive fractions.
- Study of antidiabetic activity of the total alcoholic extract.

About Authors

Yomna M. Yassine is a doctoral researcher at National Research Centre, Egypt. She finished her Msc in 2016 from Faculty of Pharmacy; Ain Shams University; Egypt. Her research topic is isolation and identification of bioactive constituents from natural resources

Prof. Dr. Abdel-Razik H. Farrag is a professor of Pathology, Pathology Department, National Research Centre, Egypt. His research topic is study of histological and histochemical effects of natural products from plants and marine soft corals.

Prof. Dr. Mahmoud I. Nassar; is a professor of Natural Product Chemistry, Natural Compounds Chemistry Department, National Research Centre, Egypt. His research topic is isolation and structure elucidation of bioactive constituents from medicinal plants and marine soft coral such as flavonoids, steroids, ceramides and volatile oil.