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INTRODUCTION
Diabetes mellitus (DM) is a metabolic disorder 
characterised by abnormal glucose, protein 
and lipid metabolism, resulting in an elevated 
plasma glucose level.1 Diabetes is also associated 
with polyurea, weight loss, muscle weakness, 
polydipsia, polyphagia, and hyperlipidaemia and 
hyperglycaemia. Insulin suppresses the function 
of lipase‑stimulating hormones in adipose tissue.2 
When insulin is not functioning optimally, the 
rate of lipolysis rises releasing free fatty acids into 
the bloodstream; this also increases β‑oxidation of 
fatty acids and cholesterol. Insulin also mediates 
cholesterol elimination; thus, its absence results 
in hyperlipidaemia and hypercholesterolemia in 
diabetes.2 

According to the World Health Organisation 
(WHO) data, 400 million people worldwide have 
diabetes, with approximately 1.5 million deaths, and 
this rate is expected to double by 2035 due to people's 
affluent lifestyles.3,4 If blood sugar levels are not  
controlled, it can have a major influence on multiple 
organs, leading to ailments such as hypertension, 
kidney disease and blindness. Diabetes treatment 
is costly, and it also has negative side effects 
such as weight gain and gastro‑intestinal issues. 
Furthermore, people find it difficult to adjust to 
lifestyle changes such as consuming sugar‑free 
foods. As a result, it is critical to seek out alternate 
methods of controlling blood sugar.5 

Food plants with promising therapeutic potential 
and few adverse effects are gaining attention and 
acknowledgment for diabetes control. Unlike 
pharmaceutical antidiabetic medicines, which 
are laden with notable side effects, wild plants 

do not have these side effects and do not require a 
strict regimen because they can be consumed as 
food.5 The various mechanisms by which plant 
drugs demonstrated anti‑diabetic activity include 
glycosidase (glucosidase) inhibition, α‑amylase 
inhibition, and  inhibition of hepatic glucose 
metabolizing enzyme.6 Furthermore, plant foods 
can be effective by stimulating insulin production 
or acting as an insulin mimic, stimulating 
glycogenesis, reducing the release of glucagon and 
other hormones that counteract insulin action, 
antioxidant mechanism, preventing glycosylation 
of haemoglobin and regulating glucose absorption 
from the gut.5 This review article enumerates some 
commonly consumed wild plants in South Africa 
possessing antidiabetic activity. The nine vegetables 
are Chinese cabbage (Brassica rapa), pigweed 
(Amaranthus species), Jew’s mallow (Corchorus 
olitorius), spider flower (Cleome gynandra), pumpkin 
(Cucurbita pepo), purslane (Portulaca oleracea), 
tsamma melon (Citrullus lanatus), blackjack 
(Bidens pilosa) and white goosefoot (Chenopodium 
album). The vegetables were chosen on the basis of 
popularity.7,8

MATERIALS AND METHODS
Literature search was conducted using Google 
Scholar, Pubmed, Scopus, Science Direct, ProQuest 
and Web of Science. Search terms included ‘African/
traditional/indigenous leafy vegetables’, separately 
and in combination with their common names, 
namely ‘pigweed’, ‘pumpkin’, ‘spider flower’, 
‘purslane’, ‘blackjack’, ‘Jew’s mallow’, ‘Chinese 
cabbage’ and ‘tsamma melon’. Scientific names 
including ‘Amaranthus species’, ‘Cucurbita pepo’, 
‘Cleome gynandra’, ‘Portulaca oleracea’, ‘Bidens 
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much lower concentrations than the extracts. It would therefore seem 
as if the extract is not as effective as the known anti‑diabetic drugs as 
the majority of the plants were more effective at higher concentrations 
than the positive controls. The most studies (n = 29) were performed 
on P. oleraceae followed by C. lanatus (n = 19) and C. olitorius (n = 
12) with positive results reported for all of them. There was significant 
variance in the duration of treatment among in vivo studies, ranging 
from 2 hours to 18 weeks. Noteworthy, significant acute blood glucose 
level control was reported in all the plants (Table 2).

CONCLUSION
An extensive literature survey was performed on commonly consumed 
wild foods in South Africa, namely Portulaca oleracea, Citrullus lanatus, 
Bidens pilosa, Amaranthus spp., Brassica rapa, Chenopodium album, 
Cucurbita pepo and Cleome gynandra. Alloxan‑ and streptozotocin‑
induced diabetic rats and mice were commonly used as the model to 
assess the antidiabetic activity for preclinical in vivo studies (Table 2). 
In vitro antidiabetic activity was mostly conducted using α‑amylase 
and α‑glucosidase inhibition assays. Some of the mechanisms of action 
for reported plants include improvement in insulin sensitivity and 
pancreatic β‑cell function (Table 1).

Antidiabetic active compounds such as 1‑4, (E)‑5‑hydroxy‑7‑
methoxy‑3‑(2'‑hydroxybenzyl)‑4‑chromanone, cytopiloyne, stearic 
acid ethyl ester, 3‑beta‑D‑glucopyranosyloxy‑1‑hydroxy‑6(E)‑
tetradecene‑8,10,1 2‑triyne, 2‑beta‑D‑glucopyranosyloxy‑1‑hydroxy‑
5(E)‑tridecene‑7,9,11‑triyne, 3‑beta‑D‑glucopyranosyloxy‑1‑
hydroxy‑6(E)‑tetradecene‑8,10,12‑triyn, methyl 4‑O‑caffeoyl‑2‑C‑
methyl‑D‑erythronate, 4‑O‑methylokanin, – (14E, 18E, 22E, 26E) 
– methyl nonacosa‑14, 18, 22, 26 tetraenoate, indole‑3‑acetonitrile, 
4‑methoxyindole‑3‑acetonitrile, indole‑3‑aldehyde, flavonoids, 
liquiritin, licochalcone A, sinapic acid, caffeic acid, 2‑phenylethyl 
β‑glucopyranoside, salidroside, syringic acid, adenosine, (3β, 20E)‑
ergosta‑5, 20 (22)‑dien‑3‑ol, Licochalcone A, caffeic acid, palmitic acid, 
pheophorbide A‑methyl ester and α‑spinasterol were isolated from 
some of the wild plants. Given the large number of in vivo studies, it 
could be expected that more compounds would have been isolated and 
tested. 

Even though all the plants have been extensively studied for their 
antidiabetic activity, better results were rarely reported than the drugs 
acarbose and glibenclamide used as positive controls. Noteworthy is 
that much more in vivo studies (n=96) have been reported than in vitro 
studies (n=34), which is unexpected as in vitro studies are normally 
used as an indicator potential to be tested further for in vivo activity.

Surprisingly, only three plants, P. oleracea, B. pilosa and A. cruentus, 
have been subjected to clinical trials, given the large number of in vivo 
studies conducted. The majority of the methodology used for clinical 
trials was not appropriately designed and hence led to inconclusive 
findings. This therefore creates an opportunity and need for exploring 
wild foods in clinical trials. In addition to antidiabetic activities, the 
reported wild foods extracts showed an improvement of lipid profile 
parameters. As a result, it was demonstrated that these plant extracts 
might be used to treat diabetes mellitus complications and risk factors. 
However, more research is warranted to investigate and underline 
in‑depth mechanisms of action towards the management of diabetes 
mellites, associated complications and to isolate antidiabetic active 
constituents. All the plants reported in this study describe the potential 
of these plants to aid in the treatment of diabetes as part of the diet 
by consumption of indigenous vegetables. The review present strong 
support for well‑designed clinical trials and the development of novel 
antidiabetic drugs from the indigenous leafy vegetables discussed in 
this review. This section is not mandatory but can be added to the 
manuscript if the discussion is unusually long or complex.

pilosa’, ‘Corchorus olitorius’, ‘Brassica rapa’, ‘Citrullus lanatus’ and 
‘Chenopodium olitorius’ were used separately and in combination with 
‘diabetes mellitus’, ‘antidiabetic’, ‘hypoglycaemic’, ‘antihyperglycemic’ 
and ‘type‑2 diabetes’. The search was limited to only peer reviewed 
papers published in English, and therefore theses and dissertations 
were excluded. In addition, references of the articles were also searched. 
To be included in this study, the plant materials should be eaten as part 
of the diet. All articles that addressed indigenous medicinal plants and 
trees as well as indigenous fruits not consumed as vegetables, were also 
excluded. A total of 2  021 articles were retrieved of which only 192 
matched the inclusion criteria for the review. 

RESULTS AND DISCUSSION

Extraction of wild foods 
The in vivo antidiabetic activities of the crude extracts and solvent 
fractions of different wild vegetable parts using different chemicals 
were investigated as displayed in figure 1. Among solvents, aqueous was 
the most commonly used solvent for the extraction of plants, followed 
by ethanol and methanol solvents. Some studies tested for antidiabetic 
effects using dried plant parts, juice prepared from the leaves, and other 
methods.

In vitro studies
In vitro studies that were undertaken to assess commonly consumed 
wild foods in South Africa involve the use of cell culture and the use 
of carbohydrate‑hydrolysing enzymes, α‑amylase and α‑glucosidase. 
Glucose uptake in the skeletal muscles and adipose tissue is critical for 
the reduction of postprandial blood glucose concentrations in people 
with type‑2 diabetes mellitus.9 

A total of 34 in vitro studies were reported with α‑amylase and 
α‑glucosidase (n = 15) being the most commonly used enzymes, 
followed by studies that investigated only one of the enzymes with 
α‑amylase (n = 10) being the most common, and closely followed by 
α‑glucosidase (n = 4). Significant differences in concentrations were 
reported from 1.70 and 1.60 μg/ml up to as high as 0.19 mg/mL and 
0.32 mg/mL for α‑amylase and α‑glucosidase respectively. Similar to 
the in vivo studies, most studies (n = 7) were performed on P. oleraceae 
followed by C. lanatus (n = 5), C. olitorius and C. pepo (both n = 4), 
although the group of Amaranthus spp. in combination showed the 
most reports (n = 8). 

(E)‑5‑hydroxy‑7‑methoxy‑3‑(2'‑hydroxybenzyl)‑4‑chromanone (HM‑
chromanone) isolated from P. oleracea showed a significant increase in 
glucose uptake in 3T3‑L1 adipocytes by stimulating translocation of 
GLUT4 to the plasma membrane.10 HM‑chromanone also promoted 
glucose uptake into L6 skeletal muscle cells in a dose‑dependent 
manner. Notably, Portulaca oleracea exhibited more α‑glucosidase 
and α‑amylase activities when compared with the reference drug 
(acarbose).11 In addition, Chenopodium album inhibited α‑amylase 
enzyme more effectively than conventional acarbose.12 The in vitro 
antidiabetic activities of commonly consumed wild foods, which have 
been investigated in South Africa, are summarized in table 1.

In vivo studies
A total of 96 studies were reported, which is a very high number of in 
vivo studies that have already been conducted with most using mice and 
rats as experimental animals. Of the 96 studies that were conducted, the 
STZ‑induced rat model was the most common (n = 50) followed by the 
Alloxan‑induced rat model (n = 37). Most studies found positive results 
at activity of 50 to 800 mg/kg bw, although concentrations as low as 
1.25 mg/kg bw and as high as 2 000 mg/kg bw have been reported with 
positive results. It is however interesting that in the majority of studies 
the control (mostly glibenclamide and metformin) showed activity at 
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Scientific name Common 
name

Extract/ 
Compound Model Dose Results Reference

Portulaca oleracea Purslane

E)‑5‑hydroxy‑7‑
methoxy‑3‑(2'‑
hydroxybenzyl)‑4‑
chromanone

INS‑1 
Pancreatic β 
Cells

1, 5, 10, 20 µM

Protection of the pancreatic 
β‑cell from high glucose‑
induced oxidative stress and 
apoptosis. 

 [10]

Ethanol extract
INS‑1 
Pancreatic β 
Cells

0.1, 0.2, 0.5, 1.0, or 2.0 mg/mL
Significantly increased 
insulin secretion dose‑
dependently.

[13]

(E)‑5‑hydroxy‑
7‑methoxy‑3‑(2'‑
hydroxybenzyl)‑4‑
chromanone (HM‑
chromanone).

L6 skeletal 
muscle cells

Compound=1,3,5,8,10,15,20 and 30µM. Positive 
control=100nM (insulin).

Promoted glucose uptake 
into L6 skeletal muscle cells 
dose dependently. 

 [14]

*Fresh and dried 
extract HepG2 cells

Cells were treated with 10‑9 mol/L insulin and 
fresh/ dry plant material (0.25, 05 and 1.0 mg/
mL). Metformin=0.086 mg/mL.

Significantly increased 
extracellular glucose 
consumption by insulin 
resistant HepG2 cells (P 
<0.05).

 [15]

Methanol water α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50

 [16]45.05 mg/mL, 
acarbose=IC50=35.5 mg/mL

488.49 mg/mL, 
acarbose= 50 mg/
mL

Methanol/water 
(8:2)

α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50 Significantly reduced 
α‑glucosidase enzyme than 
acarbose. Significantly 
inhibited α‑amylase enzyme. 

 [11]0.168 mg/mL, acarbose= 
0.295 mg/mL

0.212 mg/mL, 
acarbose= 0.334 
mg/mL

(E)‑5‑ hydroxy‑
7‑methoxy‑3‑(2'‑
hydroxybenzyl)‑4‑
chromanone

3T3‑L1 
adipocytes. 20µM

Significant increased glucose 
uptake in 3T3‑L1 adipocytes 
by stimulating translocation 
of GLUT4 to the plasma 
membrane. 

 [9]

Citrullus lanatus Tsamma 
melon

Methanol α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50

[17]627.270 µg/mL, acarbose= 
482.188 µg/mL

58.558 μg/
mL, acarbose= 
47.880 μg/mL 

Methanol/water: 7:3 α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50 Exhibited a remarkable 
α‑glucosidase and α‑amylase 
inhibitory activity. 

 [18]32.50 μg/mL, 
acarbose=18.57 μg/mL

58.51 μg/mL, 
acarbose=48 μg/
mL

α‑glucosidase IC50 α‑amylase IC50 Demonstrated the best 
inhibitory activity against 
α‑ glucosidase and a mild 
inhibitory activity against 
α‑amylase. 

 [19]54.44 μg/mL 76.68 μg/mL

i) Alcalase and ii) 
tryptic hydrolysates 
from C. lanatus

α‑Amylase i) 0.149 ii) 0.234 mg/mL
Exhibited potent α‑amylase 
inhibitory ability in a dose‑
dependent manner. 

 [20]

Hexane α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50 Showed significant α‑ 
glucosidase inhibition and 
weak α‑ amylase inhibition. 

 [21]34.41 μg/mL, acarbose=35.5 
μg/mL

421 μg/mL, 
acarbose=35.5 
μg/mL

Methanol α‑Amylase 72.15 μg/mL, acarbose=80.5 μg/mL Showed higher potency than 
acarbose.  [22]

Corchorus olitorius Jew’s mellow 

Aqueous α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50 Significantly (p < 0.05) 
inhibited α‑amylase and 
α‑glucosidase activities dose‑
dependently

 [23]1.60 μg/mL 1.70 μg/mL

Corchoruside A α‑Glucosidase 0.18Mm, acarbose =0.62Mm.

The compound was three‑
fold more potent than 
acarbose in inhibiting 
α‑glucosidase inhibition. 

 [24]

i) Free polyphenol 
extract, ii) bound 
polyphenol extract

α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50 Extracts inhibited α‑amylase 
and α‑glucosidase in dose‑
dependent manner

 [25]i) 21.5 μg/mL, ii) 29.4 
μg/mL

i) 26.8 μg/mL, ii) 
54.8 μg/mL

Methanol α‑Amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50
 [26]41.64 μg/mL‑1, 

acarbose=21.38 μg/mL‑1
27.95 μg/mL‑1 
acarbose=21.38 μg/mL‑1

Table 1: Summary of in vitro antidiabetic activity of African widely consumed wild foods.
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Bidens pilosa Black jack

α‑Amylase 

α‑amylase
92.75 ± 0.34% 
inhibition at 5 
mg/mL. acarbose 
inhibited α‑amylase 
by 99.21 ± 0.32 at 1 
mg/mL.

The leaves of B. pilosa 
showed a 92.75 ± 0.34 
inhibition on α‑amylase 
activity at 5 mg/mL. 
Acarbose which was tested 
at 1 mg/mL caused a 99.21 ± 
0.32 inhibition activity

 [27]

n‑hexane

α‑Glucosidase

α‑glucosidase IC50

Demonstrated in vitro 
α‑glucosidase inhibitory 
activity  [28]

235.8 μg/mL

chloroform α‑glucosidase IC50

125.6 μg/mL

aqueous α‑glucosidase IC50

100.3 μg/mL

caffeoylquinic acid 
derivatives

α‑glucosidase IC50 Showed significant 
α‑glucosidase inhibitory 
activity214.5 μM

Amaranthus 
species

Pigweed

A. caudatus

Methanol

α‑amylase

α‑amylase Inhibited α‑amylase activity 
significantly  [29]19.233 μg/mL

Acarbose 0.312 μg/mL
Oscar blanco seeds 
methanol extract 94.7 ±0.008 % Inhibited α‑amylase activity  [30]

Victor red seeds 
methanol extract 95.1±0.001%

A. cruentus

Acetone

α‑amylase and 
α‑glucosidase

α‑glucosidase α‑amylase Showed moderate α‑amylase 
enzyme inhibition and 
strong α‑glucosidase 
inhibition

 [31]78% 46%

α‑amylase and 
α‑glucosidase

α‑glucosidase α‑amylase Showed moderate α‑amylase 
and glucosidase enzyme 
inhibition

 [32]40% 35%

Methanol α‑amylase IC50 value of 46.73 mg/mL  [33]

Unprocessed leaf α‑glucosidase IC5 α‑amylase IC50
inhibited α‑amylase and 
α‑glucosidase activities in a 
dose dependent manner. 

 [34]

0.32 mg/mL 0.19 mg/mL

Methanol 

α‑amylase and 
α‑glucosidase

α‑glucosidase α‑amylase
inhibited α‑glucosidase 
and moderately inhibited 
α‑amylase. 

 [35]

41.85‑87.13 mg/mL, acarbose= 66.31‑80.20 mg/
mL
23.47‑39.63 mg/mL, acarbose= 71.37‑89.00 mg/
mL

Palmitic acid
83.92‑91.26 mg/mL, 
acarbose= 71.37‑89.00 
mg/mL

18.68‑25.05, mg/mL, 
acarbose= 66.31‑80.20 
mg/mL

Pheophorbide
A‑methyl ester

53.16‑75.41 mg/mL, 
acarbose= 71.37‑89.00 
mg/mL

7.23‑49.84 mg/mL, 
acarbose= 66.31‑80.20 
mg/mL

α‑Spinasterol 61.13‑80.06 mg/mL, 
acarbose= 71.37‑89.00

13.06‑43.37 mg/mL, 
acarbose= 66.31‑80.20 
mg/mL

A. hybridus  Methanol
89.92‑97.10 mg/mL, 
acarbose= 66.31‑80.20 
mg/mL

5.67‑27.47 mg/mL, 
acarbose= 66.31‑80.20 
mg/mL

A. spinosus

i) chloroform 
fraction of a 
methanol extract; ii)
– (14E, 18E, 22E, 
26E) – methyl 
nonacosa‑14, 18, 22, 
26 tetraenoate; iii)
Acarbose

α‑glucosidase α‑glucosidase IC50

 [36]i) 8.49 µM/mL; ii) 6.52 µM/mL; 
iii) 15.25 µM/mL

Ethanol α‑amylase and 
α‑glucosidase

α‑glucosidase IC50. α‑amylase IC50 The extract showed lower 
activity than acarbose in 
α‑glucosidase. However, 
compared to the other 
plant samples, A. spinosus 
showed the most potency on 
α‑amylase 

[37]237.06 µg/mL‑1, 
acarbose=36.98 µg/
mL‑1

3.37 µg/mL‑1. The 
values for acarbose 
inhibition on α‑amylase 
were not shown
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A. viridis
Water α‑amylase α‑amylase IC50  [38]5.058±0.41 µg/mL
Dried fruits and 
flowers α‑amylase α‑amylase  [27]82.5% at 5mg/ mL. Acarbose= 99% at 1 mg/mL. 

Brassica rapa Chinese 
cabbage

 i) licochalcone A
ii) caffeic acid α‑glucosidase α‑glucosidase IC50 Showed potent α‑glucosidase 

inhibition  [39]i) 118.9 µM; ii) 76.9 µM; acarbose=142 µM

Chenopodium 
album

White 
goosefoot

Flavonoid fraction α‑amylase
α‑amylase IC50 More efficacious than 

standard acarbose  [12]122.18 ± 1.15 μg/mL; acarbose =812.83 ± 1.07 
μg/mL

Dried fruits and 
flowers α‑amylase

α‑amylase Showed low reduction in 
α‑amylase activity [27]32.52% at 5mg/ mL. Acarbose= 99% at 1 mg/

mL.

Cucurbita pepo

Pumpkin

i) Seed oil obtained 
by cavitation‑
accelerated 
aqueous enzymatic 
extraction (CAEE); 
ii) Seed oil 
obtained by soxhlet 
extraction (SE)

α‑amylase

α‑amylase IC50

Showed good antidiabetic 
activity.  [40]i) 40.68 μg/mL; ii) 45.46 μg/mL

Acetone α‑amylase α‑amylase IC50 Suppressed α‑amylase 
activity. [41]1.82 mg/mL; acarbose=  0.56 mg/mL

Ethanol α‑amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50 Showed week α‑amylase 
α‑glucosidase inhibitory 
activities.

[42]144.77 µg/mL; 
Acarbose =35.50 µg/
mL

278.88 µg/mL; acarbose 
=50.01 µg/mL

Polysaccharide α‑amylase and 
α‑glucosidase

α‑glucosidase IC50 α‑amylase IC50 Possessed α‑amylase and 
α‑glucosidase suppression 
activities

 [43]110.32±7.08 mg/mL; 
acarbose= 64.04 ±2.21

103.06±1.60 mg/mL; 
acarbose= 71.53 ±1.67 
mg/mL

Scientific name Common 
name Extract/ Compound Model Dose Duration Results Reference

Portulaca oleracea Purslane

Aqueous Alloxan‑induced 
rats

250 mg/kg body weight 
(bw). Positive control, 
canagliflozin =10 mg/ 
kg bw

10 weeks

Canagliflozin reduced 
serum glucose levels 
more significantly than 
the P. oleracea aqueous 
extract. P. oleracea more 
effective hepatic and renal 
antioxidant

 [44]

Ethanol Alloxan‑induced 
rats

250 mg/kg bw. 
Positive control, 
canagliflozin=10 mg/ 
kg bw

28 days Alleviated the impaired 
pancreatic acinar cells.  [45]

Alloxan‑induced 
rats

1. 5 ml of herb 
suspension/100 g bw 16 days

Exerted hypoglycaemic 
effects and elevated the 
level of serum insulin.

[46]

Aqueous Alloxan‑induced 
rats 250 mg/kg 16 days

Significantly reduced 
Hb A1C, serum levels of 
glucose, TNF‑α and IL‑6. 

 [47]

Aqueous Alloxan‑induced 
rats 200 and 400 mg/kg 28 days

Significantly decreased 
fasting blood glucose, 
total cholesterol and 
triglycerides. Improved 
body weight. 

 [48]

Polysaccharide Alloxan‑induced 
rats 200 and 400 mg/kg bw 28 days

Significantly decreased 
concentration of fasting 
blood glucose (FBG), 
total cholesterol (TC) 
and triglyceride (TG). 
Significantly increased 
high‑density lipoprotein 
cholesterol (HDLc) and 
serum insulin. 

 [49]

Ethanol/water: 8:2 Alloxan‑induced 
rats

50, 100 and
200 mg/kg/day 14 days

Reduced triglycerides, 
cholesterol and 
LDL.

 [50]

Table 2: Summary of antidiabetic activity of African widely consumed wild foods in animal models.
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Petroleum ether fraction
Streptozotocin‑
induced (STZ) 
diabetic mice

75 mg /kg bw 20 days Improved liver and kidney 
function in diabetic rats  [54]

Ethanol STZ‑induced rats

100 mg/kg and 250 mg/
kg bw. Positive control, 
tolbutamide =10mg/
kg bw

3 weeks

Decreased lipid 
peroxidation that is 
associated with increased 
superoxide dismutase 
(SOD) and catalase (CAT). 

[55]

Seeds added to the diet Alloxan‑induced 
rats

Basal diet supplemented 
with 5 and 10% aerial 
parts; basal diet 
supplemented with 5 
and 10% purslane seeds

8 weeks

Increased body weight and 
HDL. Decreased blood 
glucose, TG, LDL, v‑LDL 
levels. 

[56]

Aqueous STZ‑induced rats 100, 200 and 400 mg/
kg bw 4 weeks

Improved glucose, MDA, 
IL6, TNFa, GSH and SAT 
levels in the diabetic group. 

[57]

Aqueous db/db mice 300 mg/kg bw 10 weeks

Significantly reduced 
blood glucose and plasma 
creatinine in type 2 
diabetic rats. 

 [51]

Aqueous db/db mice

250 mg/kg bw. Positive 
control,
Glibenclamide = 0.25 
mg/kg bw

10 weeks
Reduced blood glucose, 
plasma triglyceride and 
systolic blood pressure. 

[52]

Ethanol db/db mice
400 mg/kg. Positive 
control, rosiglitazone =5 
mg/kg 

6 weeks

Significantly lowered 
blood glucose and 
glycosylated haemoglobin 
(HbA1c) levels. 
Significantly decreased 
homeostatic measure of 
insulin resistance. 

 [53]

*Fresh and dried extract  STZ‑induced rats. 21 days

Significantly reduced (p 
<0.05) fasting blood glucose 
(FBG) levels, significantly 
improved oral glucose 
tolerance test (OGTT), 
and insulin secretion and 
antioxidant activity.

[15]

Aqueous STZ‑induced rats 5, 10, 20 g/kg bw 9 weeks

Reduced the body weight, 
improved the impaired 
glucose tolerance and 
lipid metabolism, 
decreased serum free 
fatty acids, attenuated 
hyperinsulinemia and 
elevated insulin sensitivity. 

[58]

Ethanol STZ‑induced rats 200 mg/kg and 400 
mg/kg 4 weeks

Reduced islet cell necrosis 
and inflammatory cell 
infiltration in the pancreas. 

[59]

Aqueous STZ‑induced rats 1 g/kg bw 4 weeks

Significantly reduced 
glycemia, serum total 
cholesterol (TC), 
triacylglycerols (TG), and 
phospholipids (PL). 

[60]

Ethanol STZ‑induced rats
100 and 200 mg/
kg. Positive control, 
metformin =10 mg/kg

28 days

Increased body weight, 
significantly reduced 
concentrations of 
glucose, anti‑aspartate 
aminotransferase, 
alanine  aminotransferase, 
triglycerides, total 
cholesterol, IL‑6, IL‑1β, 
and TNFα in serum.

[61] 

Ethanol/water: 8:2 STZ‑induced mice
300 mg/kg bw. Positive 
control, acarbose= 100 
mg/kg bw 

130 minutes Lowered postprandial 
hyperglycaemia. [11] 
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Aqueous STZ‑induced rats
Casein diet 
supplemented with 1 g/
kg bw of P. oleracea

4 weeks

Lowered glycemia and 
HbA1c values by 2.8‑ and 
1.7‑fold. Reduced TBARS 
(thiobarbituric acid 
reactive substances) by 
54% in RBC (red blood 
cells) and 65% in blood 
plasma. Elevated SOD 
(superoxide dismutase) 
and GSH‑Px (glutathione 
peroxidase) activities. 

[62]

Aqueous STZ‑induced rats 1% of P. oleracea 
aqueous extract 28 days

Decreased glucose 
and HbA1C levels. 
Enhanced insulin activity. 
Lowered plasma values 
of total cholesterol 
(TC), triacylglycerols 
(TG), very low‑ and 
low‑density lipoprotein 
cholesterol (VLDL‑C, 
LDL‑C). Elevated levels of 
high‑density lipoprotein 
cholesterol (HDL‑C), 
leading to decreased 
atherogenic indices. 

 [63]

Aqueous STZ‑induced rats 200 mg/kg 3 weeks
Significantly reduced 
the sugar level and lipid 
profile. 

 [64]

Aqueous STZ‑induced rats 300 mg/kg 35 days Significantly decreased 
hyperglycaemia.  [65]

‑ STZ‑induced rats
5% of P. oleracea mixed 
with standard pelleted 
food

12 weeks

Normalised 
neurobehavioral 
deficit associated with 
streptozotocin such as 
memory deficit and 
anxiety. 

 [66]

Hydroethanol, 
chloroform and carbon 
tetrachloride 

STZ‑induced rats
250 mg/kg bw. Positive 
control, glibenclamide = 
0.25 mg/kg bw 

16 days

Significantly reduced 
blood serum glucose. 
Significantly reduced 
LDL cholesterol levels. 
Chloroform and carbon 
tetrachloride extracts 
significantly reduced 
serum cholesterol and 
TG levels more than 
glibenclamide. 

 [67]

Powder dissolved in 
saline STZ‑induced rats Powder dissolved in 

saline 4 weeks
Lowered fasting blood 
glucose and glycated 
hemoglobin levels. 

 [68]

Crude water‑soluble 
polysaccharide STZ‑induced rats

Positive control, 
glyburide = 25 mg/
kg bw

28 days
Significantly increased the 
body weight and improved 
glucose tolerance. 

 [69]

Aqueous Tetraoxane‑induced 
diabetic mice

200 mg/kg. Positive 
control, metformin = 
250 mg 

21 days Hypolipidemic effect.  [70]

Citrullus lanatus Tsamma/ 
bitter melon

Aqueous Alloxan‑induced 
rats

200, 400 and mg/kg 
bw. Positive control, 
metformin = 100 mg/
kg bw 

21 days Reduced hepatotoxicity.  [71]

Watermelon juice Alloxan‑induced 
rats

500 and 1000 mg/kg 
bw. Positive control, 
metformin =200 mg/
kg bw 

14 days

Significantly (p < 
0.05) lowered fasting 
blood glucose, serum 
lipid profile, glucose‑
6‑phosphatase, lipid 
peroxidation, and anti‑
inflammatory activity. 

[72]

Watermelon juice Alloxan‑induced 
rats ‑ ‑

Increase in body weight. 
Hypoglycemic effect, increase 
in increases in GSH, GPx, 
CAT and SOD and a decrease 
in MDA concentration. 

 [73]
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Methanol/water: 8:2 Alloxan‑induced 
rats

i) 200 mg/kg extract.
ii) 100 mg/kg caffeine
iii) i + ii
iv) Positive control, 
glybenclamide =5 mg/
kg

21 days

Significantly decreased 
(P < 0.05) blood glucose, 
a significant increased 
sperm motility sperm 
count, normal sperm 
morphology, sperm viable 
cells and testosterone in 
plasma.

 [74]

Aqueous Alloxan‑induced 
rats

200, 400 and 600 mg/
kg bw. Positive control, 
metformin =100 mg/
kg bw 

21 days

Significantly (p≤0.05) 
reduced plasma glucose, 
pancreatic α‑amylase 
activity, total cholesterol, 
triglycerides, and 
lipoproteins. Significantly 
(p≤0.05) increased high 
density lipoproteins. 

 [75]

Petroleum ether and 
ethanol

Alloxan‑induced 
mice

150, 200, and 250 mg/
kg. Positive control, 
glibenclamide =2 mg/
kg p.o

7 days
Lowered the raised blood 
glucose levels significantly 
(P < 0.05)

[76]

Ethanol Alloxan‑induced 
rats

100, 200 and 400 mg/
kg. Positive control, 
glibenclamide =2.5 
mg/kg

4 weeks

Significant decrease 
(P= 0.001) in blood 
glucose levels. Significant 
decreased levels of 
cholesterol (TC), 
triglycerides (TG), LDL, 
elevated HDL. 

 [77]

Dried peels STZ‑induced rats 10, 20 and 30% dried 
watermelon peels 4 weeks

Significantly reduced 
blood glucose level. 
Improved serum levels 
of the other biomarker 
such as insulin and HDL, 
reduced glutathione 
(GSH), glutathione 
peroxidase (GPx), SOD 
and CAT. 

 [78]

Methanol STZ‑induced rats
200, 400, and 600 mg/
kg. Positive control, 
glibenclamide =4 mg/kg 

4 weeks

Reduced fasting blood 
glucose, serum cholesterol, 
serum triglyceride, liver 
glycogen, and glycosylated 
haemoglobin. 

 [79]

Methanol STZ‑induced rats 200 mg/kg bw 29 days
Significantly (P<0.05) 
reduced plasma glucose 
concentrations. 

[80]

Ethanol STZ‑induced rats

200, 400 and 600 mg/
kg bw. Positive control, 
glibenclamide =0.5 mg/
kg bw

28 days
Significantly decreased 
(p<0.05) glucose 
concentrations. 

 [81]

Ethanol STZ‑induced rats 100, 400 and 800 mg/
kg bw. 28 days

Significantly reduced 
creatine kinase (CKMB) 
and lactate dehydrogenase 
(LDH). 

 [82]

Methanol STZ‑induced rats 100, 200 and 300 mg/kg 28 days Decreased blood glucose.  [83]

Methanol STZ‑induced rats

200, 400 and 600 mg/
kg. Positive control, 
glibenclamide = 4 mg/
kg. 

4 weeks

Significantly reduced the 
elevated fasting blood 
glucose levels. Improved 
morphology of the 
pancreas. 

[84]

Ethanol STZ‑induced rats 50, 100 and 200 mg/kg 29 days Significantly reduced 
serum glucose levels.  [85]

Various globulins 
isolated from five 
Cucurbitaceae species 
including C. lanatus 

Glucose tolerance 
test 2 g/kg bw ‑ Reduced blood sugar.  [86]

Methanol Glucose tolerance 
test

100, 200, and 400 mg/
kg. Positive controls, 
glimepiride =25 mg/kg 
and acarbose = 50 mg/kg

‑ Hypoglycaemic effect. [87]
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Ethanol Glucose tolerance 
test

400 mg/kg. Positive 
control, glibenclamide 
=5mg/kg

30 days
Reduced blood glucose 
level, prevention of 
oxidative damage. 

 [88]

Methanol/water:8:2 ‑ 100, 200 and 300 mg/kg 20 days

Significantly reduced body 
weight and serum levels 
of liver biomarkers, and 
increased haematological 
parameters. 

 [89]

Corchorus 
olitorius Jew's mallow

Methanol Alloxan‑induced 
rats

100, 250, 500 and 1000 
mg/kg bw. Positive 
control, glibenclamide 
= 0.2mg/kg

14 days

Significantly (p≤0.01) 
lowered blood sugar 
levels in normoglycaemic, 
OGTT and diabetic rats. 

 [90]

Hexane, chloroform, 
ethyl acetate

Alloxan‑induced 
rats

250 and 500 mg/kg 
bw. Positive control, 
glibenclamide =0.2 mg/kg

‑ Hypoglycaemic activity.  [91]

Aqueous Alloxan‑induced 
rats 400mg/kg bw 28 days

Reduced serum blood 
glucose level and other 
biochemical parameters. 

 [92]

Stearic acid ethyl ester Alloxan‑induced 
rats

230 mg/kg. Positive 
control, glibenclamide 
= 0.2 mg/kg

‑

Reduced fasting blood 
sugar level. Results 
were comparable 
with a reference drug, 
glibenclamide. 

 [93]

STZ‑induced rats 10% C. olitorius 4 weeks Significantly decreased 
serum glucose levels [94]

‑ STZ‑induced rats

+High fat diet 
supplemented with 
10% of jute leaf. 
Positive control, 
acarbose=50mg/kg bw. 

30 days

Reversed blood glucose, 
α‑amylase, α‑glucosidase, 
angiotensin‑1‑converting 
enzyme activities, lipid 
peroxidation in pancreas, 
total cholesterol and 
triglyceride levels in 
diabetic rats. 

 [95]

Ethanol STZ‑induced rats
1.25 g/kg bw. Positive 
control, glibenclamide 
=20 mg/kg bw

28 days

Significantly reduced 
serum glucose level. No 
significant improvement 
in lipid profile. 

 [96]

‑ STZ‑induced rats 100 mg/g jute leaf‑
supplemented diet 30 days

Significantly (p < 0.05) 
reversed decreased hepatic 
δ‑ALAD activity. 

 [97]

Ethanol STZ‑induced rats
250 mg/kg. Positive 
control, protocatechuic 
acid=20 mg/kg

3 weeks

Significantly lowered blood 
glucose levels. Seminiferous 
tubule degenerations were 
prevented, and apoptotic 
cell numbers were reduced. 

[98]

Methanol STZ‑induced rats 100 and 200 mg/kg 21 days
Significantly (𝑃<0.001)
decreased blood glucose 
and cholesterol levels. 

 [99]

Ethanol, chloroform and 
aqueous fractions STZ‑induced rats

50 and 100 mg/
kg. Positive control, 
gliclazide =10 mg/kg

14 days

Decreased serum glucose 
level. Improved the lipid 
profile, decreased liver 
damage markers, and 
significantly increased the 
number, size, and density 
of functioning β‑cells. 

 [100]

C. olitorius powder

Long‑Evans 
Tokushima Otsuka 
(LETO) rats 
(controls) and 
Otsuka Long‑Evans 
Tokushima Fatty 
(OLETF) rats

LETO rats were fed 
with a normal diet 
containing (336 kcal 
energy, 8.6g moisture, 
18.1 g protein, 3.8 g fat, 
5.8 g dietary fibre 6.3 
g ash (1.06 g calcium). 
OLETF rats consumed 
97% of the normal diet 
and 3% dry powder of 
C. olitorius.

8 weeks

There were no significant 
differences in plasma 
glucose and serum insulin 
observed between C. 
olitorius fed OLETF and 
LETO rats. There were no 
significant differences in 
serum triglyceride, total 
serum cholesterol, total 
liver cholesterol, and total 
liver fat among the groups.

 [60]
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Bidens pilosa Black jack 

Aqueous Alloxan‑induced 
mice

50, 100 and 150 mg/kg. 
Positive control, insulin 
=1 IU/kg bw

30 days Reduced the blood 
glucose levels.  [101]

Aqueous Alloxan‑induced 
rats

200 mg/kg, 400 mg/kg 
and 800 mg/kg. Positive 
control, glibenclamide 
=0.5
mg/kg)

4 weeks Reduced glucose levels.  [102]

Ethanol/water: 85:15 Alloxan‑induced 
rats

500 mg/kg bw. Positive 
control, tolbutamide as 
a reference =60 mg/kg

‑ Significantly reduced the 
hyperglycaemia.  [103]

Methanol extract, 
cytopiloyne db/db mice

Extract=1000 mg/kg, 
compound =250 and 
500 mg/kg. Positive 
control, glimepiride =1 
mg/kg bw

33 days

Showed higher glucose‑
lowering and insulin‑
releasing activities. In 
addition, the extract and 
compound significantly 
reduced the percentage 
of the glycosylated 
hemoglobin A1c. 

[104]

Aqueous extract. 3:2 
mixture of 2‑beta‑D‑
glucopyranosyloxy‑
1‑hydroxy‑5(E)‑
tridecene‑7,9,11‑+ 
++triyne (1) and 3‑beta‑
D‑glucopyranosyloxy‑
1‑hydroxy‑6(E)‑
tetradecene‑8,10,1 
2‑triyne.

db/db mice

Compound = 250 and 
500 mg/kg. Extract = 
1000 mg/kg. Positive 
control, metformin 
=250 mg/kg

‑ Caused a significant drop 
in blood glucose.  [105]

Aqueous STZ‑induced rats

10, 50 and 250 mg/kg 
bw. Positive control, 
glibenclamide =2.5 
mg/kg

28 days

Decreased blood glucose 
levels, significantly 
improved glucose 
tolerance. 

[106]

Methanol STZ‑induced rats

100, 200 and 400 mg/kg. 
200 mg/kg of chromium
picolinate and extract 
100 mg/dL.

28 days Showed a decrease in 
blood sugar levels. [107]

Butanol fraction Non obese diabetic 
mice (NOD) 3 and 10 mg/kg 18 weeks

Prevented mice from 
hyperglycemia and 
hypoinsulinemia. 

[108]

Butanol fraction Non obese diabetic 
mice (NOD) 10 mg/kg extract 18 weeks

Maintain the normal 
morphology of pancreatic 
β islets. Furthermore, 
treatment of NOD mice 
with the butanol fraction 
of B. pilosa inhibited 
β‑cell death and leukocyte 
infiltration.

 [109]

Amaranthus spp. 

Pigweed

A. caudatus Hydroethanolic Goto‑Kakizaki 
(GK)

1000 and 2000 mg/
kg bw 21 days

Improved glucose 
tolerance, increased 
serum insulin levels. 

 [110]

A. spinosus

‑ STZ‑induced rats 250 and 500 mg/kg bw 21 days

Reduced blood glucose, 
increased activities of 
both enzymatic and non‑
enzymatic antioxidants. 

 [111]

Methanol STZ‑induced rats 200 and 400 mg/kg ‑

Showed significant 
antidiabetic and 
anticholesterolemic 
activity (P<0.01). 

 [112]

Methanol STZ‑induced rats 200 and 400 mg/kg 21 days Antidiabetic and 
hypolipidemic activities.  [113]

Methanol STZ‑induced rats

250 and 500 mg/
kg. Positive control, 
glibenclamide =500 
µg/kg

15 days

Significantly exhibited 
control of blood glucose 
level. Accelerated 
spermatogenesis by 
increasing the sperm 
count and accessory sex 
organ weights. 

 [57]
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A. tricolor Methanol Glucose tolerance 
test

200 and 400 mg/kg 
bw. Positive control, 
glibenclamide =10 mg/
kg bw

2 hours Reduced blood glucose  [117]

Aqueous Alloxan‑induced 
rats

3 ml/kg/day bw. Positive 
control, glibenclamide 
=10 mg/kg

14 days
Significantly reduced 
blood glucose and 
cholesterol levels. 

[118]

Methanol Glucose tolerance 
test

50 and 500 mg/kg 
bw. Positive control, 
glibenclamide = at 10 
mg/kg bw

‑ Antihyperglycemic 
activity.  [114]

Hydroethanolic Oral glucose 
tolerance test

125, 250 and 500 mg/
kg bw. Positive control, 
glibenclamide = 0.6 mg/
kg bw

180 minutes
Showed a significant (p < 
0.001) decrease in blood 
glucose levels. 

 [115]

Ethanol Alloxan‑induced 
rats

150, 300 and 450 mg/
kg bw. Positive controls, 
glibenclamide = 600 μg/
kg bw and metformin = 
500 mg/kg bw

30 days

Significantly decreased 
(p<0.01) plasma glucose 
levels, hepatic glucose‑6‑
phophatase activity and 
increased hepatic glycogen 
content (p<0.01) with 
a concurrent increase 
in hexokinase activity 
(p<0.01). Higher doses 
significantly reduced 
plasma and hepatic lipids, 
urea, creatinine levels and 
lipid peroxidation. 

 [116]

Aqueous Alloxan‑induced 
rats 200 and 400 mg/kg bw 12 hours

Lowered serum glucose, 
serum triglyceride, total 
cholesterol, low density 
lipoprotein, and very low 
density lipoprotein but 
increased (p < 0.05) high 
density lipoproteins. 

 [119]

Methanol Alloxan‑induced 
rats 400 mg/kg bw 7 days Improved in body weight  [120]

A. viridis 

Methanol Alloxan‑induced 
rats

200 and 400 mg/
kg. Positive control, 
glibenclamide =10 
mg/kg

15 days
Significantly reduced 
blood glucose and lipid 
profiles. 

 [121]

Methanol STZ‑induced rats 200 and 400 mg/kg bw 21 days

Significantly increased 
body weight, decreased 
blood glucose, total 
cholesterol and serum 
triglycerides. 

[122]

Aqueous STZ‑induced rats 100, 200 and 400 mg/
kg bw 30 days

Lowered blood glucose 
levels in a dose‑dependent 
manner, modulated lipid 
profile changes. 

 [123]

Methanol Glucose tolerance 
test

50, 100, 200 and 400 
mg/kg bw. Positive 
control, glibenclamide 
=10 mg/kg bw

120 minutes

Demonstrated dose‑
dependent significant 
antihyperglycemic 
activity. 

 [124]

Aqueous Alloxan‑induced 
rats 200 mg/kg bw 24 hours

Significant (p < 0.05) 
reductions in the mean 
fasting blood glucose. 

 [125]

12 hours  [119]

Ethanol STZ‑induced rats 200 and 400 mg/kg 14 days

Caused a significant (p < 
0.001) reduction in blood 
glucose levels. Decreased 
in malondialdehyde 
protein, increase in 
superoxide dismutase 
protein, catalase protein 
and reduced glutathione 
protein. 

[126]
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Brassica rapa Chinese 
cabbage

Ethanol Alloxan‑induced rats 10, 15, and 20 mg/
kg bw 30 days

Significantly (p<0.05) 
reduced blood glucose and 
malondialdehyde levels

 [129]

Ethanol db/db mice

0.26 g/100 g diet. 
Positive control, 
rosiglitazone =0.005
g/100 g diet

5 weeks Improved hepatic glucose 
and lipid metabolism.  [130]

A. hybridus

Ethanol STZ‑induced rats 100 and 200 mg/kg bw 30 days

Significantly (p < 0.05) 
reduced the serum 
levels of glucose, 
total cholesterol and 
triglycerides. 

[127]

Ethanol STZ‑induced rats 200 and 400 mg/kg 14 days

Reduced elevations in the 
serum levels of creatinine, 
urea and uric acid, and 
urine levels of total 
proteins and albumin. 
The histopathological 
examination of kidney in 
drug treated rats shows 
significant protective 
effect against STZ 
oxidative stress. 

 [128]

Aqueous STZ‑induced rats
100 and 400 mg/
kg. Positive control, 
metformin =50 mg/kg

4 weeks

Significantly improved 
antihyperglycemic activity. 
Effectively reduced liver 
enzyme increase and 
histological damage. 

 [131]

Ethanol STZ‑induced rats

0.5, 2.0 and 5.0 mg/kg 
bw. Positive control = 
glibenclamide =125 mg/
kg bw

4 weeks

Decreased the level of 
blood glucose. In addition, 
histological studies 
showed a restorative effect. 

 [132]

Aqueous
Triton 
hyperlipidemia 
induced rats

200 and 400 mg/kg 
bw. Positive control, 
atorvastatin =10mg/
kg bw

10 days

Prevented the rise of 
plasma total cholesterol. 
The extract also 
significantly(p<0.05) 
decreased LDL cholesterol 
and triglyceride levels in 
hyperlipidemic. 

 [133]

Ethanol Alloxan‑induced 
rats 200 mg/kg 8 weeks

Significantly decreased the 
levels of serum biomarkers 
of hepatic injury in the 
diabetic rats

[134]

Cucurbita pepo Pumpkin 

‑ Alloxan‑induced 
rats ‑ ‑

Reduced the elevated 
levels of the plasma 
enzymes produced by the 
induction of diabetes

 [135]

‑ Alloxan‑induced 
rats

100% wheat flour and 
fortified cake with 
10% and 20% zucchini 
flowers powder

30 days

Significant increased 
HDL‑C accompanied 
by a significant decrease 
in total cholesterol, 
TG, LDL‑C and 
VLDL‑C. Restored 
acetylcholinesterase 
(AChE), catalase (CAT) 
and glutathione (GSH) 
activities which were 
lowered in brain of 
diabetic animal. 

[136]

Petroleum ether and 
hydro‐alcoholic extract STZ‑induced rats 100, 200, and 400 mg/kg 45 days

Significantly increased 
body weight, lowered 
blood glucose levels, 
and ameliorated kidney 
hypertrophy index. 
Decreased the levels of 
creatinine, blood urea 
nitrogen, total cholesterol, 
triglycerides, AGEs and 
albumin in urine. 

 [137]
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Ethanol ‑
10% extract of C. pepo 
leaves +90% growers 
mash.

18 days

Showed no significant 
differences regarding 
lipid levels. Although the 
difference was statistically 
insignificant (P=0.068), 
there was a marked 
increase in the HDL level 
of the test group. 

 [138]

Polysaccharide (PP‑
PE) obtained by hot‑
water extraction from 
Cucurbita pepo

Alloxan‑induced 
rats

100 mg/kg. Positive 
control, chlorpropamide 
= 100 mg/kg

7 days Decreased blood glucose 
levels. [43]

Ethanol Alloxan‑induced 
rats 250 and 500 mg/kg bw 15 days

Nearly reversed most of 
the changes induced by 
alloxan such as serum 
glucose and hepatic lipid 
peroxidation

 [139]

‑ Alloxan‑induced 
rats 1 and 2 g/kg 4 weeks

Significant decreased 
levels of liver enzymes 
(ALT, AST, ALP) which 
were high in untreated 
diabetic rats. 

 [140]

Tocopherol fraction PX‑407‑induced 
rats 2 and 5g/kg 12 weeks

Showed a significant 
improvement in glycemia, 
insulinemia, and lipid 
dysmetabolism

 [141]

Chenopodium 
album

White 
goosefoot

Flavonoid fraction 
(CAFF), tannin fraction 
(CATF), alkaloid 
fraction (CAAF)

STZ‑induced rats 250 and 500 mg/kg 14 days
Significant decreased 
glucose, cholesterol, and 
triglyceride levels. 

[12]

Methanol STZ‑induced rats

200, 350 and 500 mg/
kg bw. Positive control, 
glibenclamide =10 mg/
kg bw

28 days

Normalised plasma lipid 
status and decreased 
cholesterol, triglyceride, 
and LDL levels. 

 [142]

Cleome gynandra Spider flower

Methanol Alloxan‑induced 
rats

200 and 400 mg/
kg. Positive control, 
metformin =25 mg/kg

7 days

Significantly (p<0.05) 
reduced the serum glucose, 
elevated dyslipidemia, 
SGOT and SGPT levels. 

[143]

Ethanol STZ‑induced rats 250 and 500 mg/kg 8 days

Produced a dose‑dependent 
fall in fasting blood glucose. 
Moreover, serum lipid levels 
were restored to near normal 
levels. 

 [144]

Methanol STZ‑induced rats
400 mg/kg bw. Positive 
control, glibenclamide 
=20 mg/kg bw

21 days

Significantly reduced the 
levels of AST, ALT, ALP, 
total bilirubin, urea and 
creatinine. 

[145]

Ethanol Alloxan‑induced 
rats 200 mg/kg 14 days

Elevated HDL and 
reduced triglycerides, total 
cholesterol, LDL and VLDL. 

[146]

Figure 1: Extracted and fractionated wild antidiabetic plants in South Africa
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