Antioxidant and Tyrosinase Inhibitor Activities of Ethanol Extracts of Brown Seaweed (*Turbinaria conoides*) as Lightening Ingredient

Diani Mega Sari1, Effionora Anwar2*, Nurjanah3, Ayun Erwina Arifianti4

1Master Student at Faculty of Pharmacy, University of Indonesia, INDONESIA.
2Professor at Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Indonesia, INDONESIA.
3Professor at Department of Aquatic Products Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, INDONESIA.
4Master at Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Indonesia, INDONESIA.

Correspondence
Prof. Effionora Anwar
Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Jawa Barat 16424, INDONESIA.
Phone no : +6281383293995
E-mail: effionora.anwar@farmasi.ui.ac.id

INTRODUCTION

Skin lightening is a basic requirement for people who live in tropical countries such as Asia. Asian cultures consider bright skin as a beautiful standard. The growth of skin lightening products in Asia is increasing rapidly.1 Most skin lightening products contained drug that have side effects on long-term use. Side effects that arise are dermatological reactions such as burning, itching, irritation and causing the effects of dependance. These side effects are related to the safety of the product.2 Lightening active ingredients that are considered unsafe such as mercury and hydroquinone because mercury can cause nephrotoxicity, due to the accumulation of heavy metals contained in the material.2

Turbinaria conoides is one of brown macroalgae which can be found in the oceans of Indonesia.3 *T. conoides* has bioactive compound such as carotenoid, laminarin, alginate, fucoidan and mannitol.1 Fraction of *T. conoides* has reported by Karthik (2016), contained phloroglucinol (0.49 mg TAE/g).4 Phloroglucinol is a multifunctional phenolic derivative that only can be found in brown algae. Phloroglucinol showed various activities such as anti-inflammatory, antioxidant, antiphotoaging, antitumor, antivirus and matrix-metalloproteinase.6,7 In the study of Babitha and Kim (2011), phloroglucinol has been known to have activity inhibitor tyrosinase, because of its copper chelating agent.6,7 The activity of tyrosinase inhibitors is one of the parameters on skin lightening agent. The mechanism of tyrosinase inhibitors is to decrease skin pigmentation by inhibit the catalytic steps of the enzyme to the pigmentation associated with melanin production in the pathway of melanogenesis.8 Skin lightening agent are associated with antioxidant activity that can protect the skin against oxidative pressures mediated by UVR.9 Skin exposed to UVR exposure in both acute and chronic can cause various cellular and biological changes such as DNA damage, loss of homeostasis and cell function, abnormal pigmentation due to changes in melanin synthesis, immunosuppression and inflammation that can cause skin problems, such as photoaging and non-invasive skin cancers such as non melanoma and melanoma.9

ABSTRACT

Background: *Turbinaria conoides* is one of abundant brown macroalgae in Indonesian oceans contains phenolic derivatives. Phloroglucinol is a multifunctional phenolic derivative in brown algae. Phloroglucinol has been known to have activity inhibitor tyrosinase, because phloroglucinol is copper chelating agent. The antioxidant and the tyrosinase inhibitor activities are parameters of the skin lightening active ingredient. The mechanism of tyrosinase inhibitors is to decrease skin pigmentation by inhibit the catalytic steps of the enzyme to the pigmentation associated with melanin production in the pathway of melanogenesis. Antioxidant activity protects skin against oxidative stress mediated by UVR. Numerous report have determine phenolic compound of *T. conoides* as antioxidant but none is reported as tyrosinase inhibitor. **Objective:** The objective of this study is to determine the activities of *T. conoides* as antioxidant and tyrosinase inhibitor. **Methods:** *Turbinaria conoides* were extracted with ethanol with different concentration (30%, 50% and 70%) by maceration method. Crude ethanol extracts of *T. conoides* were Determined its total phenolic content, antioxidant activity (DPPH) and tyrosinase inhibitor. **Results:** E50 showed the highest total phenolic content (2763±1.05 mg PGE/g extract). Antioxidant and tyrosinase inhibitor activities of E50 showed IC50 value of 215.96 µg/mL and 188.85 µg/mL, respectively. **Conclusion:** Ethanol extract of *Turbinaria conoides* is potential as antioxidant agent and tyrosinase inhibitor. **Key words:** *Turbinaria conoides*, Phloroglucinol, Total phenolic content, Antioxidant, Lightening agent.
MATERIAL AND METHODS

Material

The brown seaweed, *T. conoides*, obtained from Pasauran Beach, Banten, West Java. *T. conoides* has been identified in LIPI Oceanography. Phloroglucinol (Sigma-Aldrich), Folin-Ciocalteu reagent (Merck), kojic acid (Sigma-Aldrich), ascorbic acid (Sigma-Aldrich), mushroom tyrosinase EC 1.14.18.1 (Sigma-Aldrich), L-tyrosine (Sigma-Aldrich), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) (Sigma-Aldrich).

Method

Extraction of *T. conoides*

T. conoides was washed immediately using sea water after collected from ocean. *T. conoides* was packaged with ice box during the expedition. Then *T. conoides* rinsed and stored in the freezer at -20°C before use.10 The extraction method of *T. conoides* was a modification from Li et al. (2017). Maceration of *T. conoides* using 3 concentrations of ethanol such as 30%, 50% and 70% during 3 days. Before maceration, they were shaken using a homogenizer 15000 rpm for 5 min. After extraction, each mixture was filtered to separate residue and supernatant. The supernatant was then evaporated using a rotary vacuum evaporator until crude extract was obtained.10

Total Phenolic Content of *T. conoides* Extract

Determination total phenolic content of *T. conoides* extract was measured by Folin-Ciocalteu method with slight modification from Bobo-garcia G. et al. (2015). Extract solution (25 µL) were mixed with 100 µL of reagent Folin-Ciocalteu 25% and shaken for 1 min in 96-well microplate. The mixture was incubated at room temperature until 4 min. Then the mixture added 75 µL of sodium carbonate solvent (10%) in 96-well microplate and shaken for 1 min. The mixture was incubated at room temperature until 2 h. The absorbance of mixture was measured using the microplate reader at 760 nm and compared to phloroglucinol calibration curve (10-320 µg/mL).11,12

Antioxidant Activity of *T. conoides* Extract

DPPH methods

Determination of antioxidant activity was based on Bobo-garcia G. et al. (2015) with some modification. Activity of *T. conoides* was measured using microplate reader with DPPH method. 20 µL of diluted sample was added to 180 µL DPPH solvent (150 µM) in 96-well microplate and shaken for 60 s. Then, the mixture was incubated at room temperature for 30 m and absorbance of the mixture measured at 517 nm.11 The result was compared with ascorbic acid. Antioxidant activity of *T. conoides* extract was calculated using the following equation:

Scavenging effect (%) = [(Asample–Asample blank)/ (Acontrol-Acontrol blank)] × 100

Where Asample is the absorbance of the test sample, Asample blank is the absorbance of the sample only, Acontrol is the absorbance of the control and Acontrol blank is the absorbance of the methanol only. The result was described as IC50 value. The IC50 value was calculated as the concentration of sample (µg/ml) requiring scavenging 50% of the DPPH in the reaction mixture.10,11

Tyrosinase Inhibitor Activity of *T. conoides* Extract

The best of antioxidant activity of *T. conoides* extract was determined tyrosinase inhibitor activity using microplate reader by Kang et al. (2004) method with slight modification.13 40 µL enzim (240 unit/mL) and 40 µL sample (*T. conoides* extract) was added into 96-well microplate containing 40 µL L-tyrosin and 80 µL buffer solution (50 mM, pH 6.5). The mixture shaken 60 s and incubated for 30 m at room temperature. Then, the absorbance was measured using microplate reader at 475 nm. The result was compared with kojic acid. The percent inhibition of *T. conoides* extract was expressed as activity tyrosinase inhibitor and calculated by the following equation:

% Inhibition: [(A-B) - (C-D)] / (A-B) x 100%

Where A is the absorbance at 475 nm without sample, B is the absorbance at 475 nm blanko control (without enzyme and sample), C is the absorbance at 475 nm sample (enzyme and sample) and D is the absorbance at 475 nm sample control (sample without enzyme). The result was described as IC50 value. IC50 value is the concentration of inhibitors required to inhibit half the activity of the enzyme under test conditions.13

RESULTS

Extraction of *T. conoides*

The yield of rendemen of E30, E50 and E70 were obtained 6%, 4.4% and 4.8%, respectively.

Total Phenolic Content of *T. conoides* Extract

The total phenolic content of all *T. conoides* extracts were expressed as mg Phloroglucinol Equivalent (PGE) per gram of the extract. The total phenolic content of all *T. conoides* extracts were calculated using curve calibration of Phloroglucinol (ranging from 1.25 to 40 µg/mL at 96-well microplate). E50 showed the highest of total phenolic content (27.64±1.05 mg PGE/g extract), while E30 and E70 were 20.69±1.69 mg PGE/g extract and 21.04±0.35 mg PGE/g extract, respectively (Figure 1).

Antioxidant Activity of *T. conoides* Extract

Inhibition activity of E50 showed higher than E30 and E70. IC50 value of E50 was 215.96 µg/mL while E30 and E70 were 1062.093 µg/mL and 493.76 µg/mL, respectively (Figure 2). Antioxidant activity of *T. conoides* extract was compared with positive control of ascorbic acid that showed IC50 value 5.29 µg/mL.

Tyrosinase Inhibitor Activity of *T. conoides* Extract

Tyrosinase inhibitor activity was measured by microplate reader at a wavelength of 475 nm. E50 showed the presence of tyrosinase inhibitor activity with IC50 value 188.85 µg/mL (Figure 3). The results was compared with IC50 value of kojic acid (6.97 µg/mL), which is a positive control in this study (Figure 4).

DISCUSSION

The polarity and type of solvent for extraction affects the results of the total phenolic content in the extract so that those need to be considered.
Phloroglucinol including other polyphenol derivatives contained in brown alga have solubility in methanol, ethanol, acetone, tetrahydrofuran, acetonitrile, 1,4-dioxane, chloroform and dichloromethane. Based on the result of this study, E50 showed the highest total phenolic content (27.63±1.05 mg PGE/g extract) than E30 and E70. In the study from Chakraborty (2013) showed total phenolic content of methanol extract of T. conoides was 16.64±0.10 mg GAE/g extract. The total phenolic content in extract affects antioxidant activity, because phenolic compounds are known to reduce the oxidation levels of an organic matter by transferring a H atom from the OH group. This is evidenced by the results obtained that the extract has a high total phenolic content has higher antioxidant activity than others. E50 exhibited higher antioxidant activity with IC_{50} value 215.96 µg/mL than E30 and E70. However, potential of antioxidant activity of T. conoides extracts still not able as good as ascorbic acid (5.29 µg/mL). T. conoides extract showed more potential as antioxidant than S. Plagophyllum, that is brown alga with same family (Sargassaceae). Antioxidant activity of 50% ethanol extract of S. Plagophyllum extract showed 50 mg/mL can inhibition 39.16±0.01%, it was reported by Lifie, Mansauda, Anwar, Nurbayati and Anwar (2018). In the study from Ponnan et al. (2017), Ethyl acetate fraction of ethanol extract of T. conoides (EAF) has reported potential as antioxidant activity with superoxide radical scavenging activity method, that is EAF showed 57%-77% (40-80 µg/mL) of inhibition activity. Antioxidants are molecules that inhibit free radical reactions and can delay or inhibit cell damage. Skin exposed to UV exposure, requiring exogenous antioxidants acting as ROS scavenger, may improve antioxidant or pro-oxidant balance. ROS can activate melanocytes to increase the production of melanin pigment causing pigmentation disorders such as melasma. ROS that is formed will induce oxidative stress on the skin that will lead to the depletion of both intra and intercellular endothelial antioxidants, increased intracellular lipid peroxidation and induce a specific pathway that modulates inflammatory, immunosuppressive, or skin apoptotic processes.

The mechanism of action of antioxidants as skin lightening by inhibition from tyrosine oxidation to quinone dihydroxyphenilalanine and decrease free radical in keratinocytes caused by ultraviolet exposure. Based on the result, tyrosinase inhibitor activity of E50 showed IC_{50} value 188.85 µg/mL. E50 showed potential as tyrosinase inhibitor activity than methanol extract of Ecklonia stolonifera OKAMURA (Laminariaceae) which was 345 µg/mL. T. conoides showed more potential as tyrosinase inhibitor, if it compared to previous study with another genus from the same family such as Sargassum plagyo phyllum and Sargassum polycystum. In the study of Arifiani et al. (2017) reported fresh powder of S. plagynphyllum have tyrosinase inhibitor activity with IC_{50} value 4.97 mg/mL, while based the result Chan et al. 2011, extract ethanol S. polycystum showed did not have any effect at the highest dose of tyrosinase concentration (500µg/mL).

Phenol, flavonoids and coumarin are secondary metabolites that have activity inhibit excess melanin production processes. This metabolite was developed in pharmaceutical cosmetic as lightening ingredient. Flavonoids are one of the polyphenols that have activity as anti-inflammatory, antiviral, antioxidant, anti-cancer and scavenger ROS. In depigmentation activity, flavonoids can directly inhibit tyrosinase activity in melanogenic pathways. Functional structure analysis in flavonoids showed that flavonoids with α-keto groups had activity in inhibiting tyrosinase, due to the similarity between the dihydroxyphenyl group in DOPA and α-keto containing flavonoids. Phenol, flavonoids and coumarin are secondary metabolites that have activity inhibit excess melanin production processes. This metabolite was developed in pharmaceutical cosmetic as lightening ingredient. Flavonoids are one of the polyphenols that have activity as anti-inflammatory, antiviral, antioxidant, anti-cancer and scavenger ROS. In depigmentation activity, flavonoids can directly inhibit tyrosinase activity in melanogenic pathways. Functional structure analysis in flavonoids showed that flavonoids with α-keto groups had activity in inhibiting tyrosinase, due to the similarity between the dihydroxyphenyl group in DOPA and α-keto containing flavonoids.

CONCLUSION

Ethanol extract of T. conoides showed activity as antioxidant and tyrosinase inhibitor, hence, it will be potential to be developed in pharmaceutical cosmetics as lightening ingredient.

ACKNOWLEDGEMENT

This research was supported by Universitas Indonesia for PITTA 2018 Research Grant.

CONFLICT OF INTEREST

The authors declares no conflict of interest.

ABBREVIATIONS

DPPH: 2,2-Diphenyl-1-picrylhydrazyl; E30: 30% Ethanol Extract of T. conoides; E50: 50% Ethanol Extract of T. conoides; E30: 70% Ethanol Extract of T. conoides; GAE: Galic Acid Equivalent; TAE: Tannic Acid Equivalent; **T. conoides**: Turbinaria conoides; PGE: Phloroglucinol Equivalent.
SUMMARY

- 50% ethanol extract of T. conoides showed the highest of total phenol content and antioxidant activity. The extract has the ability as a tyrosinase inhibitor and can be used as a skin lightening ingredient.

ABOUT AUTHORS

Diani Mega Sari: A master student at Faculty of Pharmacy, Universitas Indonesia (UI) Depok, Indonesia. The master research focused on the study of development of natural ingredient of cosmetics.

Effionora Anwar: Professor at Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia (UI) Depok, Indonesia. She has many experienced in semisolid formulation from medicinal plants.

Ayun Erwina Arifianti: Master at Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Indonesia (UI) Depok, Indonesia. Her research focused on development technology of formulation.

Nurjanah: Professor at Department of Aquatic Products Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University (IPB) Bogor, Indonesia. She has many experienced in marine product especially seaweed.

REFERENCE

