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INTRODUCTION
Polycystic ovarian syndrome (PCOS) is a 
reproductive disorder that affects 4-20% of women 
in their childbearing age1. It is the primary cause of 
female infertility2.  Literature reports that chronic 
low-grade inflammation is a central player in the 
pathogenesis of PCOS, and the Toll-like receptor 
4 (TLR4) is a well-recognized pattern recognition 
receptor linked with this inflammation3,4. These 
receptors also have their role in innate immunity, 
cancer, and tissue homeostatic activities5 and 
are expressed in various body tissues, including 
reproductive organs, where they recognize 
pathogenic as well as damage-associated patterns6. 
Recently, the therapeutic application of TLR4 
inhibitors has caught attention due to their 
potential in treating various health conditions. 
Proteins have always been a primary target of 
interest, as they can bind various ligands, including 
drugs, as well as phytochemicals. In this context, 
computer-aided drug design (CADD), such as the 
generation of 3D structure-based pharmacophore 
and molecular docking methods, can aid in 
identifying the potential hit compounds, evaluating 
their interactions with the target receptor quickly, 

and developing efficient therapeutics for various 
health conditions7. Moreover, there has been 
growing interest in exploring the phytochemicals 
to find a safe anti-inflammatory therapeutic agent8. 
Gamma Oryzanol is a phytochemical derived from 
brown rice (Oryza sativa L.) with a broader safety 
profile and no major side effects. It consists of 
esters of ferulic acid combined with phytosterols 
and triterpene alcohol derivatives of rice bran 
and possesses antidiabetic, anti-inflammatory, 
antioxidant, and immune modulatory properties9-12. 
In a recent study, gamma-oryzanol exhibited TLR4-
lowering activity13,14. However, which of the gamma 
oryzanol’s main derivatives: β-sitosteryl ferulate, 
Cycloartenyl ferulate, Campesteryl ferulate, and 
24-methylenecycloartanyl ferulate can potentially 
lower the levels of TLR4 is still unidentified, so the 
current study was designed to identify the active 
constituent responsible for the TLR4-reducing 
effect and the anti-inflammatory action of gamma 
oryzanol. We performed pharmacophore modeling 
and molecular docking experiments to investigate 
the manner of binding of β-sitosteryl ferulate, 
Cycloartenyl ferulate, Campesteryl ferulate, and 
24-methylenecycloartanyl ferulate to TLR4 to 
explore the key structural attributes responsible for 
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the inhibitory mechanism. The results of this study will contribute to a 
deeper understanding of the molecular basis underlying the inhibitory 
actions of these compounds and allow more accurate and quicker 
prediction of their biological activity.  Moreover, the study provides 
significant guidance for the future design of potent and selective TLR4 
inhibitors with promising therapeutic efficacy. 

MATERIALS AND METHODS

Pharmacophore model generation
The Molecular Operating Environment (MOE) 2019 software was 
utilized to construct the receptor structure-guided pharmacophore 
model based on the x-ray crystallographic structure of TLR4/MD2. 
The pharmacophore query editor tool available in the MOE software 
was used to recognize different key pharmacophore features essential 
for binding and biological activity, such as hydrogen bond donor, 
hydrogen bond acceptor, hydrophobic, aromatic, and pi-interactions, 
and build a pharmacophore model after exploring the molecular 
interaction of the bound ligand within TLR4/MD2’s active binding 
site15,16. Ten small molecules with known antagonistic activity against 
TLR4 validated the pharmacophore model. An in-house set of gamma 
oryzanol compounds was created in mdb. format. Then the in-house 
database was screened against the generated pharmacophore model, 
and hit compounds were identified. The threshold for hit identification 
was based on pharmacophore fit score with RMSD <1 Å and successful 
mapping of ligands to all pharmacophore features. Goodness of hit 
scoring was assessed by pharmacophore mapping, RMSD, and rScore.

Molecular Docking
All the hit compounds (CID: 5282164, CID: 9920169, CID: 15056832, 
CID: 9938436) were retrieved from the PubChem chemical repository 
in 3-dimensional sdf. format followed by energy minimization and 
preparation in MOE. The X-ray crystallographic structure of TLR4 
was downloaded from the Protein Data Bank (PDB) database in 
pdb. format. The target protein was prepared by removing water and 
heteromolecules. The polar hydrogens were added, and energy was 
minimized following the standard protocol in the Molecular Operating 
Environment (MOE) 2019 software. After preparing the target protein, 
the active site was found using the active site finder feature of MOE. 
Dummy atoms were created and saved as shown in Figure 1. The hit 
compounds were docked with the active site of TLR4. For Placement, 
the triangular matcher method was used to generate ten poses for 
each ligand, and scored by London dG. For the refinement purpose, 
the induced fit refinement method was used; five poses were generated 
and scored by GBVI/WSA dG.  For each ligand, the pose with the most 
negative (lowest) GBVI/WSA dG score was selected. The docking pose was 
validated by re-docking the co-crystallized ligand, achieving a RMSD ≤ 2Å.  

Docking Analysis
Docking results were analyzed to evaluate ligand binding to the target 
protein, the involvement of interacting amino acid residues, and the 
nature of the binding interactions. MOE was used to analyze the 
docking results. The docking scores and Root Mean Square Deviation 
(RMSD) were considered the core parameters to evaluate this purpose.  
RMSD is an important metric to quantify the deviation of the atomic 
coordinates of the ligand relative to a reference structure in predicted 
docking poses. This parameter is essential for evaluating the reliability 
and precision of the docking results. Generally, a docking conformation 
with the most negative binding score and a RMSD value less than 2 Å 
is considered reliable.

RESULTS AND DISCUSSION
We generated a structure-based pharmacophore containing three 
features: one hydrogen bond donor, one hydrogen bond acceptor, and 

one hydrophobic feature (Figure 2). The purple ball represents the 
hydrogen bond donor; the cyan ball represents the hydrogen bond 
acceptor, and the green ball represents the hydrophobic feature. 

The pharmacophore was used as a query to search for the 
compounds. In the screening of compounds against the generated 
pharmacophore, four hit compounds were identified with RMSD<1: 
24-methylenecycloartenyl ferulate, Cycloartenyl ferulate, Campesteryl 
ferulate, and β-sitosteryl ferulate. The physicochemical properties of 
the hit compounds are represented in the Table. 1. 

Based on the root mean square distance (RMSD) value <1, the hit 
compounds 24-methylenecycloartenyl ferulate, cycloartenyl ferulate, 
campesteryl ferulate, and β-sitosteryl ferulate were docked with TLR4, 
as shown in Table. 2. 

The molecular docking results in Figure 3 and Figure 4 illustrate that 
the tested compounds were capable of direct binding to TLR4. Among 
all the ligands,  Cycloartenyl ferulate had the most potent interaction 
with TLR4 (-7.9933) through two hydrogen bond interaction with Asp 
395 (distance: 2.94, Energy: -3.7 Kcal/mol), and Gly 123 (distance: 3.51, 
followed by 24-methylenecycloartenyl ferulate (-7.8580) through two 
hydrogen bond interactions to Ser 120 (distance: 3.06, Energy: -1.0 Kcal/
mol) and Lys 122 (distance: 3.26, Energy: -3.5 Kcal/mol), Campesteryl 
ferulate (-6.1675) through two hydrogen bonds with Arg 106 (distance: 
3.15, Energy: -2.5 Kcal/mol) and Glu 154 (distance: 2.93, Energy: -3.1 
Kcal/mol), and β-sitosteryl ferulate(-5.9673) through hydrogen bond 
interaction with Lys 341 (distance: 3.0, Energy: -1.5 Kcal/mol). 

The pharmacophore modeling is a very handy tool for the discovery 
and development of lead compounds17,18. It is the primary step towards 
predicting the three-dimensional interaction between a receptor and a 
ligand and extracting the essential features required for their biological 
activity19,20. A structure-based pharmacophore model derived from the 
3D structure of a target protein provides valuable insights into protein-

Compounds ID MW (g/mol) HBD HBA LogP
5282164 602.90 1 4 10.15
9920169 616.9 1 4 10.11
15056832 576.86 1 4 9.61
9938436 590.89 1 4 10.00

Table 1. Physicochemical properties of ligands

MW: Molecular weight; HBD: hydrogen bond donor; HBA: hydrogen 
bond acceptor

Hits Compounds 
ID Structure RMSD

Docking 
Score
(kcal/mol)

1 5282164 0.6921 -7.9933

2 9920169 0.6921 -7.8580

3 15056832 0.6921 -6.1675

4 9938436 0.6921 -5.9673

Table 2. Chemical Structure of Hit compounds and Docking scores

https://pubchem.ncbi.nlm.nih.gov/compound/5282164
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Figure 1. Preparation of structures for molecular docking; a) Preparation of target protein, b) Preparation of ligand

Figure 2. Structure-based pharmacophore model
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Figure 3. Interactions of ligands with TLR4

ligand interactions and the further development of ligand binding 
affinity21,22. Although the pharmacophore model constructed from 
already known inhibitors also allows the identification of key chemical 
features existing in experimentally known potent inhibitors23-26. Our 
study employed the structure-based pharmacophore modeling approach 
combined with molecular docking to predict the possible inhibitory 
compounds of TLR4 to set evidence for experimental studies. The 
pharmacophore modeling showed that the gamma oryzanol compounds 
fit the features extracted from the interaction of TLR4 with its ligands. 
The RMSD and rscore were used to identify the best-fit hit compounds. 
The docking result showed that it can bind with TLR4 to modulate its 
activity. Cycloartenyl ferulate had the most potent interaction with the 

TLR4 compared to 24-methylenecycloartenyl ferulate, Campesteryl 
ferulate, and β-sitosteryl ferulate. Emerging evidence suggests that 
TLR4 is a primary driver of inflammation in PCOS, leading to 
reproductive abnormalities, including infertility27. Experimental 
studies show that inhibiting TLR4 can improve various symptoms of 
PCOS. Thus, targeting the TLR4 pathway by specific phytochemicals 
and modulators could be a promising avenue to combat multiple 
abnormalities of PCOS28,29.  The strong anti-inflammatory properties 
of gamma oryzanol support its therapeutic potential to suppress 
inflammation in PCOS. Different in vivo studies report their protective 
actions in male reproductive disorders and ovarian changes in PCOS30-

32. To evaluate the potential for oral delivery and systemic exposure, the 
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drug-likeness of the primary gamma oryzanol compounds was assessed 
by Lipinski's Rule of Five (Ro5).  It exhibited RO5 violations in terms of 
molecular weight and lipophilicity, which may contribute to its limited 
intestinal absorption and systemic bioavailability when administered 
orally in its native form33. However, RO5 mainly applies to synthetic 
molecules, and notable exceptions exist for natural compounds like 
gamma oryzanol and particularly for large natural compounds that 
utilize specific active transport mechanisms34. As triterpene ferulate, 
gamma oryzanol compounds are structurally similar to phytosterols, 
which are known to be absorbed by active, carrier-mediated transport 
in the gut35, rather than depending solely on passive transport predicted 
by the Ro5, compensating for their limited aqueous solubility. This 
transport pathway is independent of the molecular size and lipophilicity 
constraints of Lipinski’s rules.  Moreover, its antioxidant and lipid-
lowering activities have been consistently demonstrated in both in 
vitro and in vivo studies, supporting its therapeutic potential despite 
RO5 violations36. Its pharmacological activities often involve localized 
tissue interactions favored by its highly lipophilic nature, which could 
be particularly beneficial in managing reproductive disorders such as 
PCOS. 

Though the computational analysis predicts its poor passive 
absorption, the compound’s observed biological activities, structural 
class (phytosterols), and alternate transport mechanisms justify its 
continuous investigation as a valuable biologically active candidate, 
particularly when evaluated in the context of natural product-based 
drug discovery and novel delivery systems37-40. Many FDA-approved 
drugs violate Ro5 but have very good therapeutic potential, including 
many natural compounds, antibiotics, and anticancer drugs41,42. This 
virtual screening strategy, which integrates pharmacophore modeling, 
molecular docking, and key ligand target interactions, provides 
valuable mechanistic insights and can be a time-efficient and cost-
effective method before extensive experimental validation. Though 
the computational modeling seems revolutionary, it has certain 
inherent limitations.  It does not display the complexity of living 
systems, including the flexible nature of proteins, cellular permeability, 
the interaction of different proteins, and the effects of solvents.  So, 
sometimes the in silico “hits” with promising binding scores flop and 
fail to decipher into therapeutic efficacy, warranting experimental 
validation. So, the subsequent studies employing cell-based assays 
and inflammatory pathway assessments are warranted to validate the 
predicted interactions and confirm the potential of gamma-oryzanol 
as a modulator of TLR4-driven inflammation in PCOS, for its use in 
future drug development as an anti-inflammatory therapy at a low 

cost. The integration of pharmacophore modeling with experimental 
validation could significantly advance safe, natural product-based drug 
discovery targeting inflammatory and metabolic pathways. 

CONCLUSION
The present study was done to find the modulatory activity of gamma 
oryzanol compounds against TLR4. The structural key features of 
TLR4 required for its inhibition were extracted by employing the 
structure-based pharmacophore modeling using the 3-dimensional 
structure of TLR4. The results suggest that Cycloartenyl ferulate and 
24-methylenecycloartenyl ferulate had the highest binding affinity for 
TLR4 and may serve as structural candidates for further exploration 
as TLR4 modulators. Though violations of Lipinski’s Rule of Five were 
observed, these parameters are less restrictive for natural compounds, 
particularly phytosterol derivatives that utilize active transport 
mechanisms and local tissue absorption. The findings support gamma 
oryzanol’s therapeutic promise, strengthened by its known antioxidant 
and lipid-modulating activities. 
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