

Ultrasonographic and Biochemical Evaluation of the Hepatoprotective Effect of *Cinnamomum burmannii* Bark Extract in Carbon Tetrachloride-Induced Liver Injury

Inda Kania Meilani^{1*}, Ermi Girsang², Yolanda Eliza Putri Lubis³

Inda Kania Meilani^{1*}, Ermi Girsang², Yolanda Eliza Putri Lubis³

¹Doctoral Program, Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, INDONESIA.

²Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Universitas Prima Indonesia, Medan 20118, INDONESIA.

³Department of Public Health and Preventive Medicine, Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Universitas Prima Indonesia, Medan 20118, INDONESIA.

Correspondence

M. Inda Kania

Doctoral Program, Faculty of Medicine, Dentistry, and Health Science, Universitas Prima Indonesia, Medan 20118, INDONESIA.

E-mail: indakanameilani@unprimdn.ac.id

History

- Submission Date: 28-10-2025;
- Review completed: 14-11-2025;
- Accepted Date: 29-11-2025.

DOI : 10.5530/pj.2025.17.94

Article Available online

<http://www.phcogj.com/v17/i6>

Copyright

© 2025 Phcogj.Com. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

ABSTRACT

This study aimed to evaluate the hepatoprotective activity of ethanolic extract of cinnamon (*Cinnamomum burmannii*) in male Wistar rats induced with carbon tetrachloride (CCl₄). Cinnamon extract is known to contain bioactive compounds such as flavonoids and polyphenols, which play significant roles in antioxidant and anti-inflammatory mechanisms. Phytochemical analysis revealed that the extract contained total phenolic content of 71.55 mg GAE/g and flavonoid content of 0.41 mg QE/g, with a potent antioxidant activity indicated by an IC₅₀ value of 18.19 ppm. Administration of the extract for 28 days at a dose of 300 mg/kg body weight resulted in a significant reduction (P<0.05) in pro-inflammatory cytokines TNF- α , IL-6, and CRP levels compared to the negative control group. The 300 mg/kg dose showed the highest efficacy, with TNF- α levels approaching those of the normal group. Furthermore, liver function parameters improved, as evidenced by significant reductions in SGOT and SGPT enzyme levels, an increase in serum albumin (2.96 ± 0.52 g/dL), and a decrease in serum bilirubin to 0.102 ± 0.040 mg/dL. Ultrasonographic examination showed improved liver parenchymal homogeneity and a reduction in the number of nodules. Histopathological findings revealed a decrease in liver tissue damage score from moderate to mild. These findings suggest that *Cinnamomum burmannii* extract has potential hepatoprotective effects through anti-inflammatory, antioxidant, and hepatocellular recovery mechanisms. Therefore, this extract holds promise as a phytopharmaceutical candidate for complementary therapy in liver function disorders; however, further studies are required to isolate the active compounds and evaluate long-term toxicity.

Keywords: Cinnamon, hepatoprotective, anti-inflammatory, antioxidant, histopathology, cytokine

INTRODUCTION

Liver disease remains a major global health burden, contributing significantly to morbidity and mortality worldwide. According to the World Health Organization (WHO), liver-related disorders account for more than 2 million deaths annually, representing approximately 4% of all global deaths¹. The most common forms include chronic hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease (NAFLD), and cirrhosis, with rising prevalence due to increasing alcohol consumption, sedentary lifestyles, obesity, and exposure to environmental toxins². In Southeast Asia, including Indonesia, the incidence of liver dysfunction continues to grow, often linked to poor dietary habits, hepatotoxic drug exposure, and limited access to early diagnostic interventions³. The progression from mild hepatic injury to advanced fibrosis and cirrhosis poses a serious clinical challenge, as most cases are diagnosed at late stages when treatment options are limited and irreversible damage has occurred⁴. Therefore, the development of effective preventive and therapeutic strategies particularly, those that mitigate oxidative stress and inflammation has become a crucial focus in hepatology research.

The liver is a vital organ responsible for the metabolism, detoxification, and homeostatic regulation of various physiological processes⁵. It plays a central role in converting nutrients, eliminating xenobiotics, and maintaining systemic biochemical balance⁶. However, continuous

exposure to hepatotoxic agents including chemical compounds, pharmaceuticals, alcohol, and industrial pollutants can induce progressive hepatic injury and impair cellular integrity. Among these hepatotoxins, carbon tetrachloride (CCl₄) is widely utilized in experimental studies as a classic model for inducing liver injury due to its well-defined mechanism of toxicity⁷. This compound undergoes bioactivation via cytochrome P450 2E1, generating trichloromethyl (CCl₃•) and trichloromethyl peroxy (CCl₃OO•) radicals that initiate lipid peroxidation, disrupt cellular membranes, and promote necrosis and apoptosis of hepatocytes⁸.

The pathological progression of carbon tetrachloride-induced hepatotoxicity involves oxidative stress and inflammatory cascades, which collectively exacerbate cellular injury⁹. Free radical formation leads to depletion of endogenous antioxidants such as superoxide dismutase and catalase, while activation of Kupffer cells triggers the release of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF- α), interleukin-6 (IL-6), and C-reactive protein (CRP)¹⁰. These mediators further contribute to hepatic necroinflammation and fibrotic remodeling¹¹. Consequently, therapeutic interventions that attenuate oxidative stress, modulate cytokine activity, and restore hepatocellular function have garnered increasing attention as viable strategies for hepatoprotection.

Plant-based therapies are recognized as a promising approach due to their phytochemical diversity and pharmacological safety profile. Among these,

Cite this article: Inda K M, Ermi G, Yolanda E P L. Ultrasonographic and Biochemical Evaluation of the Hepatoprotective Effect of *Cinnamomum burmannii* Bark Extract in Carbon Tetrachloride-Induced Liver Injury. Pharmacogn J. 2025;17(6): 751-759.

Cinnamomum burmannii (Indonesian cinnamon) has gained interest for its potent antioxidant and anti-inflammatory properties. Its bark contains a rich composition of cinnamaldehyde, eugenol, coumarins, flavonoids, and phenolic acids, which collectively scavenge free radicals, inhibit nuclear factor-kappa B (NF- κ B) signaling, and stabilize hepatocyte membranes^{12,13}. Previous studies have shown that *C. burmannii* extract mitigates oxidative stress and lowers serum hepatic enzyme levels in High fat-induced liver injury models, indicating its potential as a natural hepatoprotective agent¹⁴.

While conventional biochemical markers such as serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), albumin, and bilirubin remain critical for evaluating hepatic function, they provide limited insight into the structural and morphological recovery of liver tissue¹⁵. In this context, ultrasonography (USG) has emerged as a valuable non-invasive imaging tool that enables real-time evaluation of hepatic echogenicity, parenchymal texture, and nodularity, providing complementary evidence of tissue regeneration during therapeutic interventions¹⁶.

Although *Cinnamomum burmannii* is known for its antioxidant properties, its hepatoprotective potential has not been comprehensively evaluated using combined ultrasonographic, cytokine, and histopathological analyses in a carbon tetrachloride-induced model. This study provides the first integrated assessment linking liver morphology, inflammatory signaling, and biochemical recovery following treatment with *C. burmannii* extract.

MATERIALS AND METHODS

Study Design and Location

This research adopted an in vivo experimental approach conducted at the Research Laboratory of the Faculty of Medicine, Universitas Prima Indonesia, from April to June 2025. The primary objective was to evaluate the hepatoprotective potential of *Cinnamomum burmannii* bark extract in Wistar rats exposed to carbon tetrachloride-induced hepatic injury. To elucidate the extract's protective and therapeutic actions, a comprehensive assessment was performed through biochemical profiling, cytokine quantification, ultrasonographic examination, and histopathological evaluation.

Preparation of Extract

The *Cinnamomum burmannii* samples utilized in this investigation were obtained from local cultivators in Telagah Village, Langkat Regency, Indonesia. A total of 300 grams of dried plant powder underwent maceration with 70% ethanol (70:30, v/v) at 25°C under continuous agitation to facilitate efficient extraction. The mixture was allowed to stand for 24 hours and subsequently filtered, with the process repeated three times to optimize the extraction yield. All filtrates were then combined and centrifuged at 3500 rpm for 10 minutes to eliminate residual plant debris. The supernatant was carefully evaporated at 38°C, yielding a concentrated hydroethanolic extract of *C. burmannii*, which was stored at 4°C until use¹⁷.

Phytochemical and Antioxidant Analysis

The extract was subjected to phytochemical screening to detect the presence of polyphenols, flavonoids, alkaloids, saponins, and tannins, following standard qualitative procedures¹⁸. To further elucidate its chemical composition, liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis was conducted for identification and confirmation of the extract's bioactive constituents. The total phenolic content was quantified using the Folin-Ciocalteu method, and results were expressed as milligrams of gallic acid equivalents (mg GAE/g extract). Similarly, the total flavonoid content was determined through the aluminum chloride colorimetric method, expressed

as milligrams of quercetin equivalents (mg QE/g extract)¹⁹. The antioxidant potential of the extract was assessed using the DPPH radical scavenging assay, with the IC₅₀ value representing the concentration required to inhibit 50% of DPPH radicals calculated to indicate its free radical-neutralizing capacity²⁰.

Animals

A total of twenty-five healthy male Wistar rats, aged 12–16 weeks and weighing between 150–200 g, were employed in this study. Prior to the initiation of experimental procedures, all animals were acclimatized for seven days under controlled laboratory conditions, maintaining a temperature of 22–24°C, relative humidity of 50–60%, and a 12-hour light/dark photoperiod. During the acclimatization and treatment phases, the rats were provided with a standard laboratory chow and unrestricted access to water (ad libitum) to preserve normal physiological conditions before the induction of liver injury.

Experimental Design

The twenty-five Wistar rats were randomly allocated into five experimental groups (n = 5) in accordance with Federer's formula, ensuring sufficient statistical validity. The experimental design was structured as follows:

1. Normal control group: received no treatment.
2. Carbon tetrachloride (CCl₄) control group: administered CCl₄ at a dose of 3 mL/kg body weight via intraperitoneal injection, twice weekly for 28 days.
3. CCl₄ + *Cinnamomum burmannii* extract (100 mg/kg BW): extract administered orally once daily.
4. CCl₄ + *Cinnamomum burmannii* extract (200 mg/kg BW): extract administered orally once daily.
5. CCl₄ + *Cinnamomum burmannii* extract (300 mg/kg BW): extract administered orally once daily.

Administration of the *Cinnamomum burmannii* extract was initiated concurrently with carbon tetrachloride (CCl₄) exposure and continued orally once daily for 28 consecutive days. On day 29, blood samples were collected from the orbital sinus under light anesthesia for biochemical and cytokine analyses. Ultrasonographic examination of the liver was subsequently performed to assess morphological and structural alterations in hepatic tissue.

Ultrasonographic Examination

Liver ultrasonography was performed weekly on days 0, 7, 14, 21, and 28 using a Chison ECO 2 portable ultrasound system fitted with a 10 MHz mini-convex transducer. Prior to imaging, each rat was anesthetized with ketamine, and the abdominal area was shaved to facilitate optimal probe contact and enhance image resolution. The liver was visualized through the subcostal approach, and parameters including echogenicity, parenchymal homogeneity, and surface contour were systematically assessed to observe hepatic structural alterations and the extent of recovery throughout the treatment period²¹. All ultrasonographic examinations and image interpretations were performed by the same experienced operator who was blinded to the treatment groups. This procedure was applied to minimize observer bias and to ensure consistency of image acquisition and interpretation throughout the study.

Biochemical and Cytokine Assays

Serum samples were prepared by centrifuging whole blood at 3000 rpm for 15 minutes, after which the supernatant was carefully collected for subsequent biochemical and cytokine analyses. The concentrations of albumin, total bilirubin, SGOT (serum glutamic oxaloacetic

transaminase), and SGPT (serum glutamic pyruvic transaminase) were measured spectrophotometrically in accordance with standard clinical chemistry procedures²². The levels of tumor necrosis factor-alpha (TNF- α), interleukin-6 (IL-6), and C-reactive protein (CRP) were determined using commercial ELISA kits (Solarbio[®], China), following the manufacturer's protocols. These biomarkers served as critical indicators of hepatic integrity and systemic inflammation, enabling a comprehensive assessment of the hepatoprotective potential of the *Cinnamomum burmannii* extract.

Histopathological Evaluation

Liver specimens were fixed in 10% neutral-buffered formalin for 24 hours to preserve cellular and tissue architecture. The fixed samples were then dehydrated through a graded series of ethanol, cleared with xylene, and embedded in paraffin wax. Tissue sections approximately 5 μ m thick were obtained using a rotary microtome and subsequently stained with hematoxylin and eosin (H&E) for histological observation²³. The prepared slides were microscopically examined to identify histopathological alterations, such as hepatocellular necrosis, fatty degeneration, sinusoidal dilation, and inflammatory cell infiltration, thereby determining the severity of hepatic damage and the degree of tissue recovery following treatment²⁴.

Statistical Analysis

All quantitative data were expressed as mean \pm standard deviation (SD). Statistical analyses were conducted using a one-way analysis of variance (ANOVA) to evaluate differences among experimental groups, followed by Tukey's post hoc test for pairwise comparisons. A p-value of less than 0.05 ($p < 0.05$) was considered statistically significant, denoting a meaningful difference between the treatment and control groups.

Ethical Clearance

All experimental procedures were carried out in strict accordance with ethical standards and received approval from the Animal Research Ethics Committee of Universitas Prima Indonesia (Approval No. 061/KEPK/UNPRI/III/2025). The study adhered to both institutional and international guidelines for the care and use of laboratory animals, ensuring the humane and ethical treatment of all subjects throughout the experimental period. Appropriate measures were implemented to minimize stress, pain, and discomfort during animal handling, administration of treatments, and sample collection.

RESULTS AND DISCUSSION

Phytochemical Composition and LC-HRMS Profile

As presented in Table 1, the ethanolic extract of *Cinnamomum burmannii* bark demonstrated the presence of several major classes of bioactive compounds, including alkaloids, flavonoids, triterpenoids/steroids, glycosides, saponins, and tannins. The detection of these phytochemical groups confirms that the extract contains multiple

Table 1. Phytochemical compound group of *Cinnamomum burmannii* extract

Parameter	Reagent	Result
Alkaloids	Bouchardat	+
	Meyer	+
	Dragendorff	+
Flavonoids	Mg-HCl + H ₂ SO ₄	+
Triterpenoids/Steroids	Liebermann-Burchard	+
Glycosides	Molisch + H ₂ SO ₄	+
Saponins	Distilled water (foam test)	+
Tannins	FeCl ₃	+

secondary metabolites responsible for its broad pharmacological properties, particularly antioxidant and hepatoprotective activities.

The presence of flavonoids and polyphenols is particularly important, as they inhibit lipid peroxidation and enhance antioxidant enzymes such as SOD and catalase²⁵. Similar findings were reported by Niknezhad et al. (2019), who demonstrated that *Cinnamomum* genus extracts reduced oxidative stress and improved liver histology²⁶. Overall, the diverse phytochemical profile supports the strong antioxidant and hepatoprotective potential of *C. burmannii* observed in biochemical and histopathological evaluations.

Additionally, as shown in Table 2, LC-HRMS profiling revealed that *Cinnamomum burmannii* bark extract contains a diverse range of phytochemicals, including flavonoids (quercitrin, catechin, epicatechin, rutin, kaempferol), phenolic acids (caffeic, ferulic, syringic, chlorogenic), and aromatic aldehydes and terpenoids (cinnamaldehyde, eugenol acetate, beta-caryophyllene, 1,8-cineole). These compounds are crucial for hepatoprotection due to their synergistic antioxidant and anti-inflammatory properties^{27,28}.

For instance, catechin and epicatechin enhance the activities of superoxide dismutase (SOD) and catalase, thereby mitigating oxidative stress and lipid peroxidation in hepatocytes²⁹. Cinnamaldehyde, a major volatile compound, exhibits membrane-stabilizing and detoxifying effects, reducing hepatocyte necrosis and inflammation. Similarly, chlorogenic and caffeoic acids have been shown to suppress TNF- α and IL-6 expression, preventing cytokine-mediated injury³⁰. These results align with Zhang et al. (2022), who reported that cinnamon polyphenols restored hepatic enzyme balance and reduced histopathological damage in paracetamol-induced rats³¹.

Total Phenolic, Flavonoid, and Antioxidant Activity

The antioxidant profile summarized in Table 3 confirms that the *Cinnamomum burmannii* extract exhibits a high phenolic content (71.55 mg GAE/g) and moderate flavonoid concentration (0.41 mg QE/g), accompanied by a very strong antioxidant activity ($IC_{50} = 18.19$ ppm). These findings suggest that phenolic compounds play a predominant role in the extract's antioxidant capacity, functioning as hydrogen donors and free radical scavengers. Similar trends were reported by Zhao et al. (2021), who found that high polyphenol levels in *Cinnamomum* species correlated strongly with inhibition of lipid peroxidation and protection against inflammation³². Thus, the potent antioxidant potential of *C. burmannii* supports its proposed hepatoprotective mechanism through oxidative stress modulation.

Ultrasonographic Evaluation

The ultrasonographic findings, as presented in Figure 1 and described in Table 4, clearly demonstrate the hepatoprotective efficacy of *Cinnamomum burmannii* bark extract in carbon tetrachloride-induced liver injury. In the negative control group, progressive hepatic damage was evident, characterized by inhomogeneous parenchymal texture, increased echogenicity, rough and irregular margins, and the appearance of multiple hyperechoic nodules. These sonographic features are consistent with fatty degeneration, fibrosis, and hepatocellular necrosis resulting from oxidative stress and inflammation induced by carbon tetrachloride metabolism via cytochrome P450 enzymes³³.

Conversely, the groups treated with *C. burmannii* extract, particularly at 200 mg/kg BW and 300 mg/kg BW, showed significant improvement in liver structure. The parenchymal texture became more homogeneous, margins appeared smoother, and the number and thickness of nodules decreased markedly. By the 28th day, rats receiving 300 mg/kg BW exhibited nearly normal echogenicity and hepatic architecture, indicating regeneration of hepatocytes and restoration of tissue integrity.

Table 2. LC-HRMS Identification of Phytochemical Compounds in *Cinnamomum burmannii* extract

No.	Compounds	Molecular Formula	Retention Time (min)	Reference Ion
1	Procyanidin dimer. A type	C ₃₀ H ₂₄ O ₁₂	11.13	[M-H]
2	Beta-caryophyllene	C ₂₆ H ₉ O ₃	5.84	[M-H]
3	Quercitrin (quercetin-3-rhamnoside)	C ₂₁ H ₂₀ O ₁₁	20.87	[M-H]
4	Procyanidin dimer. A type	C ₃₀ H ₂₄ O ₁₂	7.48	[M-H]
5	1.8-Cineole	C ₇ H ₂₈ O ₃	12.82	[M+H]
6	Syringic acid	C ₉ H ₁₀ O ₅	7.68	[M-H]
7	3,4-Dihydroxybenzaldehyde (Protocatechualdehyde)	C ₇ H ₆ O ₃	4.08	[M-H]
8	Procyanidin dimer. A type	C ₃₀ H ₂₄ O ₁₂	8.74	[M-H]
9	Cinnamaldehyde derivative	C ₂₃ H ₉ O ₁₁	4.21	[M-H]
10	Caryophyllene oxide	C ₂₆ H ₂₈ O ₁₀	18.62	[M+H]
11	Pinene derivative	C ₁₅ H ₁₃ O ₈	5.42	[M-H]
12	Protocatechuic acid	C ₇ H ₆ O ₄	3.66	[M-H]
13	Alpha-terpineol	C ₁₁ H ₂₉ O ₃	4.68	[M-H]
14	Cinnamic acid glucoside	C ₂₃ H ₁₁ O ₇	6.56	[M+H]
15	Rutin	C ₂₇ H ₃₀ O ₁₆	19.73	[M-H]
16	Epicatechin	C ₁₅ H ₁₄ O ₆	8.96	[M-H]
17	Coumarin	C ₉ H ₆ O ₂	14.69	[M+H]
18	Camphor derivative	C ₂₇ H ₂₄ O ₄	13.1	[M-H]
19	Catechin	C ₁₅ H ₁₄ O ₆	6.64	[M-H]
20	Safrole derivative	C ₂₅ H ₃₄ O ₁₂	18.16	[M+H]
21	Procyanidin B2	C ₃₀ H ₂₆ O ₁₂	9.05	[M-H]
22	Cinnamic acid	C ₉ H ₈ O ₂	17	[M-H]
23	Methyl cinnamate	C ₂₁ H ₁₁ O ₆	6.19	[M+H]
24	Eugenol acetate	C ₈ H ₂₂ O ₉	7.07	[M+H]
25	Cinnamyl alcohol	C ₂₅ H ₃₉ O ₉	13.91	[M-H]
26	Coumarin derivative	C ₁₀ H ₈ O ₇	17.46	[M-H]
27	Caffeic acid derivative	C ₁₀ H ₂₃ O ₁₁	7.94	[M+H]
28	Linalool oxide	C ₂₇ H ₁₅ O ₅	11.23	[M+H]
29	Bornyl acetate	C ₁₀ H ₃₉ O ₁₀	12.85	[M-H]
30	Vanillin derivative	C ₇ H ₃₀ O ₁₀	20.94	[M+H]
31	Ferulic acid	C ₆ H ₃₆ O ₁	7.44	[M+H]
32	Kaempferol-3-O-rutinoside	C ₁₁ H ₈ O ₁₁	5.72	[M-H]
33	Quercetin-3-O-glucoside	C ₁₃ H ₁₉ O ₆	12.5	[M+H]
34	Gallic acid derivative	C ₁₆ H ₁₀ O ₅	3.59	[M+H]
35	Apigenin derivative	C ₁₃ H ₂₃ O ₁	17.05	[M-H]
36	Rosmarinic acid	C ₂₄ H ₇ O ₂	11.07	[M-H]
37	Catechin gallate	C ₂₅ H ₂₁ O ₆	4.04	[M-H]
38	Epicatechin	C ₁₇ H ₂₀ O ₁₂	11.84	[M-H]
39	Procyanidin B1	C ₂₆ H ₃₇ O ₆	19.98	[M+H]
40	Procyanidin C1	C ₁₃ H ₄₀ O ₄	5.93	[M+H]
41	Rutin	C ₃₀ H ₁₄ O ₇	9.89	[M+H]
42	Naringenin	C ₂₇ H ₃₅ O ₃	19.94	[M-H]
43	Taxifolin	C ₂₇ H ₂₃ O ₅	5.35	[M-H]
44	Chlorogenic acid	C ₉ H ₁₆ O ₁₂	6.93	[M+H]
45	Myricetin	C ₆ H ₂₃ O ₅	15.36	[M-H]
46	Isorhamnetin	C ₈ H ₃₁ O ₁₂	8.35	[M+H]
47	Hesperidin	C ₁₃ H ₂₄ O ₅	10.45	[M-H]
48	Diosmin	C ₈ H ₇ O ₁	11.64	[M+H]
49	Luteolin	C ₁₇ H ₃₃ O ₅	10.08	[M+H]
50	Genistein	C ₂₉ H ₃₄ O ₁₁	15.66	[M-H]
51	Formononetin	C ₁₁ H ₇ O ₃	16.56	[M+H]
52	Glycitein	C ₇ H ₁₉ O ₁₀	20.37	[M-H]
53	Pinoresinol	C ₁₀ H ₂₂ O ₁	4.22	[M+H]
54	Lariciresinol	C ₆ H ₂₉ O ₁₀	5.6	[M-H]
55	Secoisolariciresinol	C ₂₂ H ₁₁ O ₁₁	18.16	[M+H]
56	Matairesinol	C ₂₉ H ₆ O ₇	12.32	[M-H]
57	Cinnamoyl glucose	C ₁₆ H ₃₉ O ₄	9	[M-H]
58	Cinnamoyl quinic acid	C ₈ H ₂₅ O ₉	19.72	[M+H]
59	Coumaroyl shikimate	C ₂₇ H ₃₅ O ₁₂	6.61	[M-H]
60	Sinapic acid	C ₁₅ H ₂₈ O ₄	4.96	[M-H]
61	Syringic acid derivative	C ₁₈ H ₉ O ₇	16.92	[M+H]
62	Ellagic acid	C ₁₈ H ₂₃ O ₈	10.04	[M+H]
63	Hydroxycinnamic acid	C ₁₉ H ₆ O ₇	12.7	[M+H]

Table 3. Total Phenolic, Flavonoid, and Antioxidant Content of *Cinnamomum burmannii* extract

Parameter	Result
Total Phenolic Content	71.5530 mg GAE/g extract
Total Flavonoid Content	0.4097 mg QE/g extract
Antioxidant Activity (IC ₅₀)	18.19 ppm (Very Strong)

Note: GAE = Gallic Acid Equivalent; QE = Quercetin Equivalent.

Table 4. Description for Ultrasonographic Evaluation

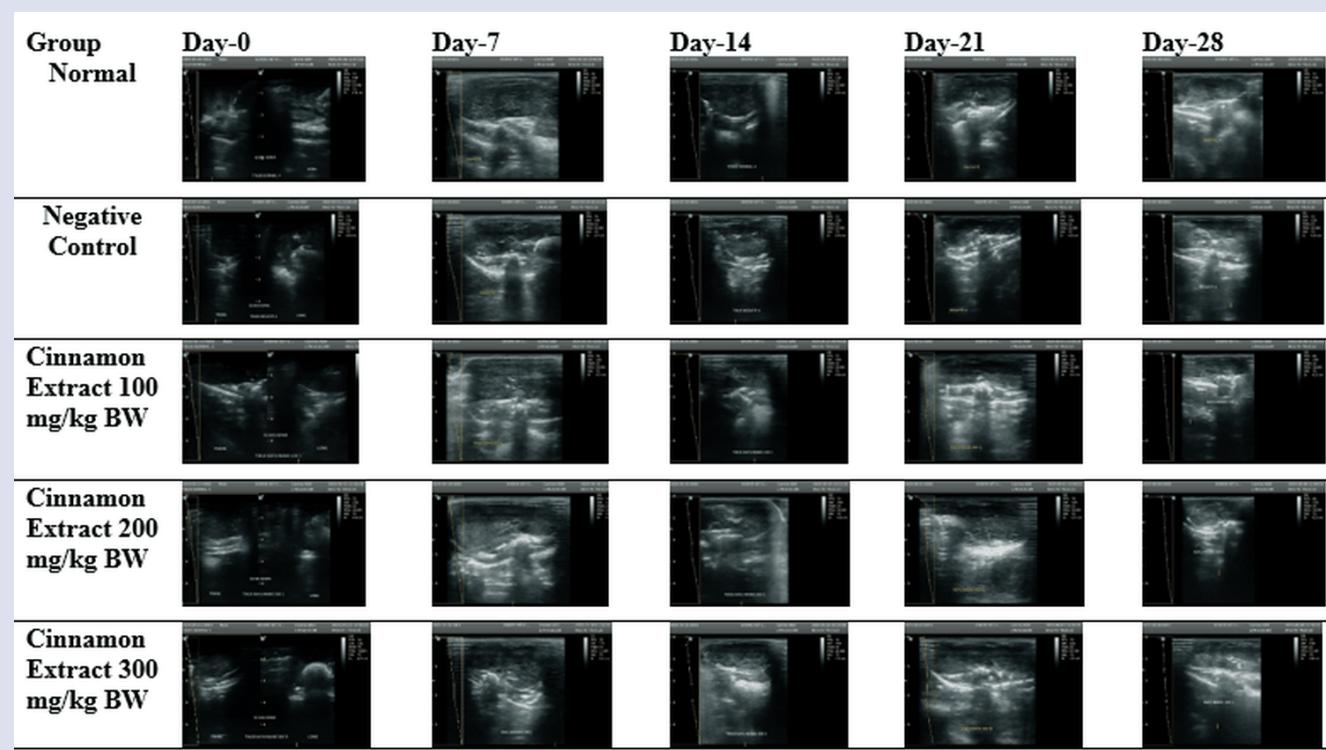
Group	Day-0	Day-7	Day-14	Day-21	Day-28
Normal	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Homogeneous parenchymal texture, smooth surface, no visible nodules.
Negative Control	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Inhomogeneous parenchymal texture, rough surface, multiple hyperechoic nodules visible.	Inhomogeneous parenchymal texture, rough surface, irregular margin, multiple hyperechoic nodules visible.	Inhomogeneous parenchymal texture, rough surface, irregular margin, multiple hyperechoic nodules visible.	Inhomogeneous parenchymal texture, rough surface, irregular margin, increased parenchymal echogenicity, multiple hyperechoic nodules visible.
Cinnamon Extract 100 mg/kg BW	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.
Cinnamon Extract 200 mg/kg BW	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple nodules visible.
Cinnamon Extract 300 mg/kg BW	Homogeneous parenchymal texture, smooth surface, no visible nodules.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple hyperechoic nodules visible.	Inhomogeneous parenchymal texture, rough surface, increased parenchymal echogenicity, multiple hyperechoic nodules visible.	Inhomogeneous parenchymal texture, relatively smooth surface, increased parenchymal echogenicity, thin hyperechoic nodules visible.	Inhomogeneous parenchymal texture, relatively smooth surface, increased parenchymal echogenicity, thin hyperechoic nodules visible.

Table 5. Effect of *Cinnamomum burmannii* extract on Serum Cytokine Levels in CCl₄-Induced Rats

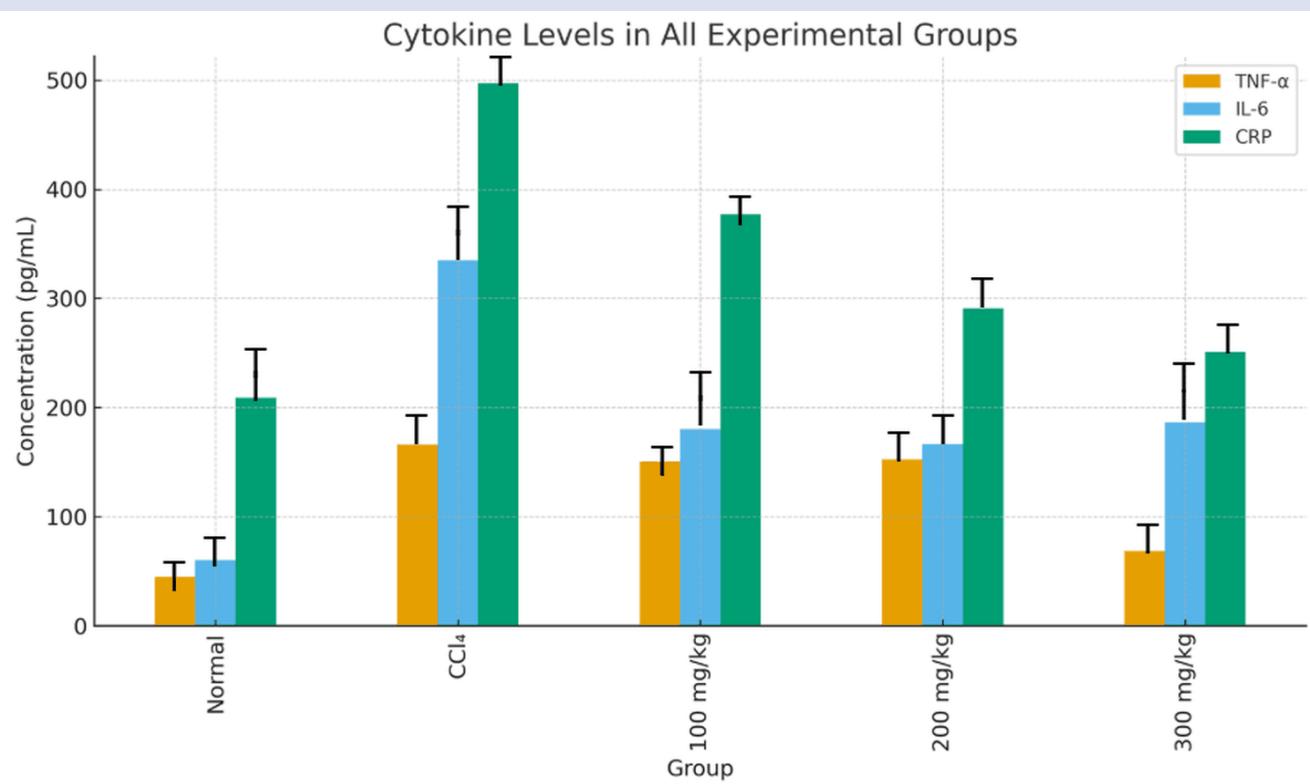
Group	TNF- α (pg/mL)	IL-6 (pg/mL)	CRP (pg/mL)
Normal control	44.88 \pm 8.81*	60.4 \pm 20.77*	209.0 \pm 38.3*
CCl ₄ control	166.13 \pm 17.88	334.8 \pm 75.28	497.0 \pm 124.2
<i>Cinnamomum burmannii</i> 100 mg/kgBW	150.63 \pm 29.31	180.4 \pm 86.45*	377.0 \pm 140.3
<i>Cinnamomum burmannii</i> 200 mg/kgBW	152.38 \pm 25.47	166.4 \pm 39.79*	291.0 \pm 74.2*
<i>Cinnamomum burmannii</i> 300 mg/kgBW	68.38 \pm 16.70*	186.4 \pm 72.02*	251.0 \pm 66.0*

Data are expressed as mean \pm SD (n = 5). *Significant differences compared with the CCl₄ control group were observed at p \leq 0.05 (ANOVA followed by Tukey's post hoc test).

Table 6. Effect of *Cinnamomum burmannii* extract on Liver Function Biomarkers in CCl₄-Induced Rats


Group	Albumin (g/dL)	Bilirubin (mg/dL)	SGOT (U/L)	SGPT (U/L)
Normal control	3.06 \pm 0.42*	0.15 \pm 0.03*	128.4 \pm 23.86*	65.2 \pm 11.52*
CCl ₄ control	1.68 \pm 0.15	0.18 \pm 0.05	233.6 \pm 22.51	123.0 \pm 29.56
<i>Cinnamomum burmannii</i> 100 mg/kgBW	2.62 \pm 0.50*	0.172 \pm 0.05	167.4 \pm 21.00*	86.0 \pm 32.27
<i>Cinnamomum burmannii</i> 200 mg/kgBW	1.98 \pm 0.46	0.178 \pm 0.10*	177.2 \pm 31.30*	88.4 \pm 19.71
<i>Cinnamomum burmannii</i> 300 mg/kgBW	2.64 \pm 0.42*	0.092 \pm 0.04*	150.6 \pm 62.74*	63.6 \pm 24.49*

Data are expressed as mean \pm SD (n = 5). *Significant differences compared with the CCl₄ control group were observed at p \leq 0.05 (ANOVA followed by Tukey's post hoc test).


These results are in agreement with Cao et al. (2023) and George et al. (2013), who demonstrated that the polyphenolic constituents of *Cinnamomum* species, such as cinnamaldehyde, catechin, and procyanidin, play crucial roles in reducing lipid peroxidation, stabilizing cell membranes, and attenuating inflammation^{34,35}. Therefore, the observed ultrasonographic recovery supports the hepatoprotective potential of *C. burmannii*, attributed to its potent antioxidant and anti-inflammatory bioactive compounds.

Serum Cytokine Levels

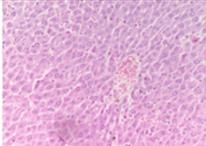
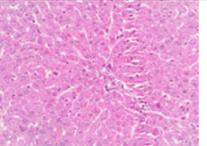
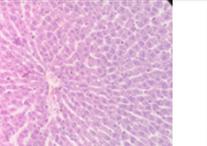
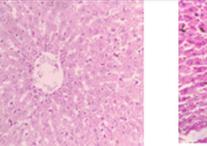




The serum cytokine profile presented in Table 5 and Figure 2 demonstrates a clear anti-inflammatory effect of *Cinnamomum burmannii* extract in rats exposed to carbon tetrachloride-induced hepatotoxicity. The CCl₄ control group exhibited a marked elevation in pro-inflammatory cytokines TNF- α (166.13 \pm 17.88 pg/mL), IL-6 (334.8 \pm 75.28 pg/mL), and CRP (497.0 \pm 124.2 pg/mL) reflecting severe

Figure 1. Ultrasonographic Evaluation. Group A = Normal control; Group B = Carbon tetrachloride control; Group C = *C. asiatica* 100 mg/kg; Group D = *C. asiatica* 200 mg/kg; Group E = *C. asiatica* 300 mg/kg.

Figure 2. Cytokine levels in all experimental groups

Normal control	CCl ₄ control	<i>Cinnamomum burmannii</i> 100 mg/kgBW	<i>Cinnamomum burmannii</i> 200 mg/kgBW	<i>Cinnamomum burmannii</i> 300 mg/kgBW
Macroscopic Image				
Histology Image				
Histology Score	0	2	2	1

Figure 3. Histological Analysis of Liver Tissue in CCl₄-Induced Rats Treated with *Cinnamomum burmannii* extract

hepatic inflammation and oxidative stress. In contrast, treatment with *C. burmannii* extract significantly reduced these cytokines in a dose-dependent manner, with the 300 mg/kg BW group showing the most pronounced decrease, approaching values of the normal control.

This attenuation of cytokine expression suggests that *C. burmannii* exerts its anti-inflammatory effects primarily through inhibition of the NF-κB signaling pathway and suppression of reactive oxygen species (ROS)-mediated hepatocyte injury. By downregulating TNF-α and IL-6, the extract helps restore the balance between pro- and anti-inflammatory mediators, thereby preventing hepatocellular apoptosis and necrosis. These effects are consistent with previous findings by Alahdal et al. (2025), who reported that cinnamaldehyde, eugenol, and polyphenols derived from *Cinnamomum* species significantly reduce cytokine production and protect hepatic tissues from toxin-induced injury³⁶.

Liver Function Biomarkers

As summarized in Table 6, treatment with *Cinnamomum burmannii* extract resulted in a remarkable improvement in liver function biomarkers in rats subjected to carbon tetrachloride (CCl₄)-induced hepatotoxicity. The CCl₄ control group exhibited significant biochemical disturbances, characterized by decreased serum albumin and increased bilirubin, SGOT, and SGPT levels findings consistent with extensive hepatocellular injury and reduced synthetic capacity of the liver. These alterations are classical indicators of hepatic dysfunction caused by oxidative stress and lipid peroxidation induced by CCl₄ metabolism³⁷.

Rats treated with *C. burmannii* extract showed dose-dependent restoration of these biomarkers. The 300 mg/kg BW group demonstrated the most notable improvements, with albumin levels increasing to 2.64 ± 0.42 g/dL, while bilirubin levels declined to 0.092 ± 0.04 mg/dL. Similarly, serum SGOT and SGPT levels decreased to 150.6 ± 62.74 U/L and 63.6 ± 24.49 U/L, respectively, approaching the normal control values. In term of lowering percentage compared with the CCl₄ control group, *Cinnamomum burmannii* extract produced marked percentage improvements in liver function biomarkers in a dose-dependent manner. At 100 mg/kg BW, serum albumin increased by 56.0%, while SGOT and SGPT decreased by 28.3% and 30.1%, respectively. The 200 mg/kg BW group exhibited a modest increase

in albumin (17.9%) with reductions of 24.2% in SGOT and 28.2% in SGPT. The most pronounced effects were observed at 300 mg/kg BW, where albumin increased by 57.1%, while bilirubin decreased by 48.9%, SGOT by 35.5%, and SGPT by 48.3% relative to the CCl₄ group. These findings indicate substantial restoration of hepatic synthetic function and membrane integrity, particularly at the highest dose.

The recovery in albumin and transaminase levels implies enhanced hepatocyte integrity and improved protein synthesis, both of which are essential markers of functional liver recovery. The strong antioxidant potential of *C. burmannii*, attributed to its rich content of cinnamaldehyde, eugenol, and polyphenols, likely plays a critical role in neutralizing reactive oxygen species (ROS) and preventing further hepatocyte necrosis³⁸. Together, these results affirm that *C. burmannii* possesses significant hepatoprotective activity by stabilizing cellular membranes, restoring enzymatic balance, and supporting hepatic tissue regeneration through antioxidant and anti-inflammatory pathways.

Histopathological Findings

As shown in Figure 3, histopathological examination supported the biochemical findings, demonstrating significant protective effects of *Cinnamomum burmannii* extract against carbon tetrachloride (CCl₄)-induced hepatic injury. The normal control group exhibited well-preserved hepatic lobular architecture, with polygonal hepatocytes, distinct nuclei, and intact sinusoidal spaces, corresponding to a histological score of 0.

In contrast, the CCl₄ control group showed extensive hepatocellular degeneration, vacuolation, fatty infiltration, and focal necrosis, particularly around the central vein, consistent with a histological score of 2, indicating moderate to severe hepatic damage. These changes reflect oxidative stress-induced cytotoxicity and inflammation triggered by the metabolic activation of CCl₄ into trichloromethyl radicals.

Rats treated with *C. burmannii* extract exhibited dose-dependent histological recovery. The 100 mg/kg BW group displayed mild hepatocellular degeneration (score 2), while the 200 mg/kg and 300 mg/kg BW groups showed near-normal hepatic morphology with minimal inflammatory infiltration and preserved hepatic cords (score 1). The reduction in necrotic and degenerative areas suggests enhanced cellular regeneration and membrane stabilization.

The observed hepatocellular regeneration is likely associated with the antioxidant and anti-inflammatory properties of *C. burmannii*, particularly due to compounds such as cinnamaldehyde, eugenol, catechins, and procyanidins. These bioactive constituents neutralize reactive oxygen species (ROS), inhibit lipid peroxidation, and stabilize hepatocyte membranes, facilitating tissue repair. Similar findings were reported by Gao et al. (2025) who demonstrated that *Cinnamaldehyde* promote hepatocyte regeneration and normalize histoarchitecture in toxin-induced liver injury³⁹. Thus, the combination of morphological recovery and improved cellular integrity confirms the strong hepatoprotective efficacy of *C. burmannii* extract.

CONCLUSION

The ethanolic extract of *Cinnamomum burmannii* bark demonstrated strong hepatoprotective effects against carbon tetrachloride-induced liver injury in rats. The extract contained high levels of phenolics (71.55 mg GAE/g) and flavonoids (0.41 mg QE/g) with potent antioxidant activity ($IC_{50} = 18.19$ ppm). Treatment, especially at 300 mg/kg, significantly reduced TNF- α , IL-6, CRP, SGOT, and SGPT levels while increasing albumin and decreasing bilirubin, indicating restored liver function. Ultrasonographic and histopathological findings showed improved hepatic architecture, reduced nodularity, and mild tissue damage. These results suggest that *C. burmannii* possesses strong antioxidant and anti-inflammatory properties and may serve as a promising natural hepatoprotective agent for preventing and managing liver dysfunction.

ACKNOWLEDGMENTS

The authors express gratitude to the Faculty of Medicine, Dentistry, and Health Sciences, Universitas Prima Indonesia, for providing research facilities and laboratory support.

REFERENCES

1. Cortez-Pinto H, Craciun A, Crespo R, Carvalhana S. Prevalence of liver disease around the world. In: *Regenerative Hepatology and Liver Transplantation*. London: Academic Press; 2025. p. 3–21.
2. Mitra S, De A, Chowdhury A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. *Transl Gastroenterol Hepatol* 2020;5:16.
3. Wong MC, Huang JL, George J, Huang J, Leung C, Eslam M, et al. The changing epidemiology of liver diseases in the Asia-Pacific region. *Nat Rev Gastroenterol Hepatol* 2019;16(1):57–73.
4. Friedman SL. Evolving challenges in hepatic fibrosis. *Nat Rev Gastroenterol Hepatol* 2010;7(8):425–36.
5. Alamri ZZ. The role of liver in metabolism: an updated review with physiological emphasis. *Int J Basic Clin Pharmacol* 2018;7(11):2271–6.
6. Mohajan HK. A study on functions of liver to sustain a healthy liver. *Innov Sci Technol* 2025;4(1):77–87.
7. Mrwad AA, El-Shafey S, Said NM. Carbon tetrachloride: a classic model for liver toxicity. *Biochem Lett* 2025;21(1).
8. Nambiar MK, Varghese V. In vitro hepatoprotective activity of methanolic leaf extract of *Acalypha indica* against CCl_4 -induced hepatotoxicity in goat liver slice culture. *Trends Sci* 2023;20(4):4562–9.
9. Fareed MM, Khalid H, Khalid S, Shityakov S. Deciphering molecular mechanisms of carbon tetrachloride-induced hepatotoxicity: a brief systematic review. *Curr Mol Med* 2024;24(9):1124–34.
10. Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, et al. Association of inflammatory cytokines with non-alcoholic fatty liver disease. *Front Immunol* 2022;13:880298.
11. Liu X, Jin J, Wang B, Ge L. Genetically predicted serum ferritin mediates the association between inflammatory cytokines and non-alcoholic fatty liver disease. *Front Endocrinol (Lausanne)* 2024;15:1437999.
12. Niknejad A, Razavi SM, Hosseini Y, Arab ZN, Abdolghaffari AH, Momtaz S. Cinnamon modulates Toll-like receptors: a new therapeutic approach for diabetes. *Rev Bras Farmacogn* 2024;34(2):223–35.
13. Guo J, Yan S, Jiang X, Su Z, Zhang F, Xie J, et al. Advances in pharmacological effects and mechanism of action of cinnamaldehyde. *Front Pharmacol* 2024;15:1365949.
14. Susilowati R, Setiawan AM, Zahroh AF, Ashari ZN, Iffiyana A, Hertanto R, et al. Hepatoprotection of *Cinnamomum burmannii* ethanolic extract against high-fat and cholesterol diet in Sprague-Dawley rats (*Rattus norvegicus*). *Vet World* 2022;15(4):930–6.
15. Kamal MM, Niazi M, Umar M. Sensitivity and specificity of ultrasonography in the early diagnosis of liver fibrosis stage in patients with chronic liver disease. *Ann Pak Inst Med Sci* 2009;5(4):237–41.
16. Huang W, Peng Y, Kang L. Advancements of non-invasive imaging technologies for the diagnosis and staging of liver fibrosis: present and future. *View* 2024;5(4):20240010.
17. Kementerian Kesehatan Republik Indonesia. *farmakope Herbal Indonesia*. Jakarta: Departemen Kesehatan RI; 2008.
18. Prananda AT, Dalimunthe A, Harahap U, Syahputra RA, Nugraha SE, Situmorang PC, et al. *Vernonia amygdalina* protects against doxorubicin-induced hepatic and renal damage in rats: mechanistic insights. *Pharmacia* 2023;70(3):e112425.
19. Nugraha SE, Suwarso E, Syahputra RA. Investigation of total phenolic content, flavonoid content, and hemostatic activity of beetroot (*Beta vulgaris* L.) extract in heparin-induced thrombocytopenia rat. *Rasayan J Chem* 2022;15(2):1306–11.
20. Wolosiak R, Drużyńska B, Derewiaka D, Piecyk M, Majewska E, Ciecielska M, et al. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—a practical approach. *Molecules* 2022;27(1):50.
21. Chen W, Wang B, Chen J, You C, Yao J, Wu D. Development of a high-frequency mini-convex array probe for intraluminal ultrasonic imaging applications. *IEEE Sens J* 2024;24(11):17560–9.
22. Gupta A, Shyoran D, Meena PK. Determination of liver cirrhosis by liver function tests, lipid peroxidation (MDA) and antioxidant enzyme (SOD). *Int J Pharm Res Technol* 2025;15(1):757–62.
23. Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. *Cold Spring Harb Protoc* 2014;2014(6):pdb.prot073411.
24. Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. *J Gastroenterol* 2016;51(6):511–9.
25. Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. *Fitoterapia* 2011;82(4):513–23.
26. Niknezhad F, Sayad-Fathi S, Karimzadeh A, Ghorbani-Anarkooli M, Yousefbeyk F, Nasiri E. Improvement in histology, enzymatic activity, and redox state of the liver following administration of *Cinnamomum zeylanicum* bark oil in rats with established hepatotoxicity. *Anat Cell Biol* 2019;52(3):302–11.
27. Costea L, Chițescu CL, Boscencu R, Ghica M, Lupuliasa D, Mihai DP, et al. The polyphenolic profile and antioxidant activity of five vegetal extracts with hepatoprotective potential. *Plants (Basel)* 2022;11(13):1680.
28. Gajender, Mazumder A, Sharma A, Azad MA. A comprehensive review of the pharmacological importance of dietary flavonoids as hepatoprotective agents. *Evid Based Complement Alternat Med* 2023;2023:4139117.

29. Simos YV, Verginadis II, Toliopoulos IK, Velalopoulou AP, Karagounis IV, Karkabounas SC, et al. Effects of catechin and epicatechin on superoxide dismutase and glutathione peroxidase activity in vivo. *Redox Rep* 2012;17(5):181–6.
30. El-Tanboly GS, Abdelrahman RS. Novel anti-arthritic mechanisms of trans-cinnamaldehyde against complete Freund's adjuvant-induced arthritis in mice: involvement of NF-κB/TNF-α and IL-6/IL-23/IL-17 pathways. *Inflammopharmacology* 2022;30(5):1769–80.
31. Abdeen A, Abdelkader A, Abdo M, Wareth G, Aboubakr M, Aleya L, et al. Protective effect of cinnamon against acetaminophen-mediated cellular damage and apoptosis in renal tissue. *Environ Sci Pollut Res Int* 2019;26(1):240–9.
32. Zhao C, Cao Y, Zhang Z, Nie D, Li Y. Cinnamon and eucalyptus oils suppress inflammation induced by lipopolysaccharide in vivo. *Molecules* 2021;26(23):7410.
33. Unsal V, Cicek M, Sabancilar I. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. *Rev Environ Health* 2021;36(2):279–95.
34. Cao P, Zhang Y, Huang Z, Sullivan MA, He Z, Wang J, et al. The preventative effects of procyanidin on binge ethanol-induced lipid accumulation and ROS overproduction via the promotion of hepatic autophagy. *Mol Nutr Food Res* 2019;63(18):1801255.
35. George RC, Lew J, Graves DJ. Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer's disease pathogenesis. *J Alzheimers Dis* 2013;36(1):21–40.
36. Alahdal AT, Al-Harbi LN, Alshammari GM, Saleh A, Yahya MA. Cinnamic acid: a shield against high-fat-diet-induced liver injury—exploring Nrf2's protective mechanisms. *Int J Mol Sci* 2025;26(16):7940.
37. Buzdar JA, Shah QA, Khan MZ, Zaheer A, Shah T, Ataya FS, et al. Hepatoprotective effects of olive leaf extract against carbon tetrachloride-induced oxidative stress: in vivo and in-silico insights into the Nrf2-NFκB pathway. *J Mol Histol* 2025;56(1):42.
38. Husna F, Suhaila S, Syahrizal D, Zulkarnain Z, Washilah H, Sahriana AP. Antioxidant potential, anti-diabetes, and toxicity of Aceh cinnamon extract (*Cinnamomum burmannii*). *Indones J Pharm Sci Technol* 2024;11(1):17–25.
39. Gao S, Zhang W, Gao X, Ye B, Hu W, Yang H, et al. Cinnamaldehyde attenuates CCl₄-induced liver fibrosis by inhibiting the CYP2A6/Notch3 pathway. *Arab J Gastroenterol* 2025;26(3):262–71.

Cite this article: Nishamol K S, Sundarajan T. Integration of Analytical and Computational Techniques for Bioactive Profiling of *Celtis timorensis* Span Bark. *Pharmacogn J.* 2025;17(6): 751-759.