Toxicity Assessment of *Vachellia karroo* (Hayne) Banfi and Galasso Pods using Brine Shrimp Assay

S Maposa, AJ Afolayan, GA Otunola*

ABSTRACT

Background and Objective: *Vachellia karroo* is widely used in folk medicine in the Eastern Cape Province South Africa, however, the pods are usually discarded as waste. This study evaluated the toxicity of acetone, hexane, aqueous and methanol extracts of *Vachellia karroo* pods using brine shrimp model. **Materials and Methods:** Different concentrations (0.0625-1 mg/mL) of the extracts were used to incubate the cysts and nauplii of brine shrimp (*Artemia salina*) to evaluate their effects on the hatching of the cyst and mortality of the nauplii respectively. The percentage of hatched cysts and Lethal Concentration (LC50) needed to kill 50% of the nauplii were recorded. **Results:** Successful hatching of the cysts was in order: Aqueous extract> methanol extract> hexane extract> acetone extract. The hatching of nauplii was in a concentration dependent fashion, with hatching success decreasing with increase in concentration of extracts. **Conclusion:** Lethality of extracts determined based on Meyers’ index of toxicity, revealed that acetone and hexane extracts of *V. karroo* were moderately toxic. **Key words:** *Vachellia karroo*, Toxicity, Brine shrimp, Lethality, Nauplii, Cyst.

INTRODUCTION

The importance of medicinal plants and traditional health systems in solving the health care problems of the word is gaining increasing attention. Because of this resurgence of interest, the research on plants of medicinal importance is growing phenomenally at international level, often to the detriment of natural habitats and mother population in the countries of origin. Most developing countries have adopted traditional medical practice as an integral part of their culture. Bacterial and fungal infections are widespread throughout the world. The situation is more critical especially in the third world countries where inadequate sanitation and primary health care programs make it difficult and expensive to combat diseases. Many plants have been used for centuries as remedies for human diseases, this has encouraged scientists to screen higher plants for medicinal importance. *Vachellia karroo* shows a huge variety in terms of its growth form, with plants from different areas in the species geographical range often having a different appearance. The main part used is usually the leaves, while the pods that are currently used in this study are often discarded as waste. This study therefore aimed at evaluating the toxicity profile of the pods using *Artemia salina* brine shrimp.

MATERIALS AND METHODS

Collection of plant material

The pods of *V. karroo* were collected from Alice in the Central Eastern Cape Province of South Africa, situated at 32.79° S, 26.83° E. The plant was identified and validated by Professor Cupido of the Botany Department, University of Fort Hare and voucher specimen (MAP/003/2018) was deposited at the Giffen Herbarium.

Preparation of extracts

Pods of *V. karroo* were air dried, then ground to a fine powder. Sixty g each of the ground plant materials were extracted separately in distilled water, methanol, acetone and hexane for 48 h on an orbital shaker. Extracts of the plant sample were filtered using a Buckner funnel and filter paper (Whatman No. 1). A rotary evaporator was used to concentrate the acetone, hexane and methanol extracts to dryness under reduced pressure at 57°C, while the aqueous filtrate obtained was concentrated using a freeze dryer (Vir Tis benchtop K, Vir Tis Co., Gardiner, NY).

Hatching assay

This assay was evaluated as described by Otang et al. Ten (10) A. salina cysts were stocked in each of the petri dishes containing 30 mL of the prepared extracts and positive controls. The petri dishes were partly covered, incubated at 30°C under constant illumination for 72 h. The number of nauplii in each petri dish was counted every 12 hours for 72 h. The percentage of hatched cysts was calculated by subtracting the number of nauplii from the total number of cysts stocked.

Lethality assay

This assay was evaluated as described by Otang et al. A. salina cysts were hatched in sea water, then 10 nauplii were pipetted into each petri dish containing the V. karroo extracts and controls as in the hatching assay. The petri dishes were then examined and the number of living nauplii (that exhibited movement during several sec of observation) was counted after every 12 h for 72 h under constant illumination. The percentage mortality (M %) was calculated as: Mortality (%) = (Total nauplii – living nauplii) / Total nauplii x 100.

Data analysis

The hatching success and mortality data obtained from the 5 different concentrations of each fraction and control experiments were used to construct the dose-response curves. From which the corresponding LC50 values were derived. The LC50 was taken as the concentration required for 50% death of the nauplii. The statistical analysis was performed on MINITAB version 17 for windows. One-way analysis of variance (ANOVA) followed by Fischer’s Least Significant Difference (for means separation) was used to test the effect of concentration and time of exposure of the plant extracts on the hatching of cysts and mortality of nauplii respectively.

RESULTS AND DISCUSSION

The hatching success of A. salina cysts incubated with different V. karroo pod extracts and control is shown in Figure 1. Sea water had a significantly higher hatching success (73%) compared to the solvent extracts and positive control (8.4%) (p < 0.05). The hatching of the cysts in acetone (15.2%) and hexane (18.4%) extracts were not significantly different from each other (p < 0.05). Aqueous and methanol extracts gave the highest hatching success of the cysts compared to the other extracts. The hatching success was in the order sea water>aqueous>methanol>hexane>acetone>potassium dichromate.

The effect of extracts of V karroo pods at varying concentrations and time of exposure of the plant extracts on the hatching of cysts and mortality of nauplii respectively. Significant differences at varying concentrations. The aqueous and methanol extracts showed equal but significantly higher hatching success of the cysts at (0.625 mg/mL to 0.25 mg/mL), compared to other extracts and control. In addition, hexane extract gave zero percent hatchability at all the concentrations tested. With increasing concentration, fewer cysts incubated in acetone and hexane extracts were hatched. The observed decrease in hatching success of A. salina cysts as the concentrations of extract increased could be as a result of relative concentration of toxic metabolites present as the concentration increased.

The effect of exposure time on hatching of A. salina is shown in Figure 3. In all the extracts, hatching of the cysts increased with exposure time. There was no hatching at 12 h and the lowest hatching was observed at 24 h for all the extracts and controls while the highest hatching was at 72 h.

This implies that A. salina was strongly sensitive to the extract and hatching was strongly dependent on exposure time. Hatching was more successful in hexane, acetone, methanol and aqueous extracts of V. karroo pods at 24 h exposure compared to the controls. Hatching of A. salina cysts into nauplii in methanol, acetone, hexane and aqueous extracts at 48 h of exposure were 60, 21, 24, 55 %, respectively. The optimal hatching of cysts to yield a large number of nauplii was achieved with 72 h of exposure. In all the extracts, hatching of the cyst was lower when compared with sea water at all the hours exposed. Artemia salina is highly vulnerable to toxins and chemical metabolites at the early developmental stages, this could have led to the very low hatching of the cysts observed at 12 h of exposure.
Brine shrimp lethality assay (BSLA)

The percentage lethality of *V. karroo* pod extracts against *A. salina* nauplii is shown in Figure 4. There was significantly higher (p<0.05) percentage mortality percentage (99%) of the nauplii incubated with the potassium dichromate control compared to the extracts with no significant difference between the acetone and hexane extracts. Hexane extract gave the highest mortality of 62.2% compared to the other extracts, while seawater gave the least mortality of 0%. Brine Shrimp Lethality Assay is a convenient method for monitoring biological activities of various plant species. Although this method does not provide any adequate information regarding the mechanism of toxic action, it is very useful for the assessment of toxic potential of various plant extracts and provides preliminary screening data that can be backed up by more specific bioassays once the active compounds have been isolated.13

The effect of varying concentrations of the *V. karroo* pod extracts on mortality of nauplii is shown in Figure 5. The mortality of nauplii was in a concentration-dependent manner, increasing with concentration. The maximum mortality was observed for all the extracts and controls at 1 mg/mL. Hexane extract showed the highest degree of mortality while aqueous extract had lowest degree of mortality compared to other solvents. The percentage mortality of hexane, methanol, acetone and aqueous was significantly lower than the positive control. Maximum mortalities occurred at the highest concentrations of 1 mg/mL in incubations of all extracts, which was significantly higher than the positive control. It could be deduced that the extracts have both toxicological and pharmacological activities based on the dosage administered.

Mortality of nauplii incubated in *V. karroo* pod extracts increased with time (Figure 6). No mortality was observed with nauplii incubated in sea water throughout the duration of the experiment. Overall, mortality of nauplii in the various extracts and control followed the trend potassium dichromate > hexane > acetone > methanol > aqueous > seawater. Among all the extracts, mortality was highest in hexane extract while it was lowest in hexane extracts with the degree of mortality increasing with exposure time for all extracts. The essence of exposing the nauplii to plant extracts over a long period of time was to determine their threshold of withstanding toxic compounds present in the various extracts. According to Carballo et al.14 maximum sensitivity of nauplii to test compounds is achieved at the second and third stage instar which occurs after 48 h of incubation. However, in this study it was not the case as maximum sensitivity was reached after 72 h of exposure.

Toxicity testing criteria

Table 1 presents the half-minimal lethal dose (LC50) of extracts of *V. karroo* pods against brine shrimp nauplii. Clarkson’s et al.15 toxicity criterion for the assessment of plant extracts classifies LC50 of extracts in the following order: extracts with LC50 above 1000 µg/mL are non-toxic, LC50 of 500 - 1000 µg/mL are low toxic, extracts with LC50 of 100 - 500 µg/mL are medium toxic, while extracts with LC50 of 0 - 100 µg/mL are highly toxic (Clarkson et al. 2004).

<table>
<thead>
<tr>
<th>V. karroo Extracts</th>
<th>LC50 (mg/mL)</th>
<th>Toxicity status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>0.22</td>
<td>Medium toxic</td>
</tr>
<tr>
<td>Methanol</td>
<td>4.33</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Hexane</td>
<td>0.22</td>
<td>Medium toxic</td>
</tr>
<tr>
<td>Aqueous</td>
<td>1.76</td>
<td>Non-toxic</td>
</tr>
</tbody>
</table>

LC50 is the concentration (mg/mL) of the plant extracts sufficient to obtain 50% inhibition of nauplii mortality of *A. salina*, respectively.

Acetone and hexane extracts showed medium level of toxicity while methanol and aqueous extracts were not toxic with LC50 above 1000 µg/mL. Therefore, the aqueous extract may be considered safe for consumption and since most usage of plants traditionally uses water either for cooking or as an extractive agent, the use of *Vachellia karroo* pods may be encouraged.

CONCLUSION

The results of this study indicate that aqueous and methanol extracts of *Vachellia karroo* pods are not toxic, therefore supporting its traditional therapeutic usage. This implies that rather than discard the pods as a waste as it being currently done, *Vachellia karroo* pods could be salvaged and processed along with the leaves, thus reducing environmental pollution.
ACKNOWLEDGEMENT
This study was supported by the Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare, South Africa.

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

FUNDING
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Govan Mbeki Research and Development Centre, University of Fort Hare, Eastern Cape, South Africa (Grant Number C127).

ETHICAL APPROVAL
Ethical approval was granted by the University of Fort Hare Animal and Plant Use Research Ethics Committee, South Africa with protocol number AFO091SMAP01.

ABBREVIATIONS

REFERENCES
SUMMARY

- This study evaluated the toxicity profile of extracts of Vachellia karroo pods using brine shrimp model.
- Lethality of extracts was concentration and exposure time dependent.
- Acetone and hexane extracts were moderately toxic, while methanol and aqueous extracts non-toxic.
- Aqueous extracts of the pods are considered safe at the concentrations evaluated.

ABOUT AUTHORS

Sandisiwe Maposa
Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa.
Mobile number: +27 719092871. Email: maposasandisiwe@gmail.com
Sandisiwe Maposa is a black South African who is passionate about education. She finished her high school in 2011 and was accepted into University of Fort Hare where she majored in microbiology and botany. She is currently a PhD student in Botany (Plant biology).

Dr Gloria Aderonke Otunola
Research Associate
Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa.

Prof. Anthony Jide Afolayan
Research Professor & Leader
Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa.