Comparative Powder Microscopic and HPTLC Studies on Stem barks of *Symplocos racemosa* Roxb. and *Symplocos crataegoides* Ham.

Nartunai Govindarajan1,*, Uma Maheswara Reddy Cheekala2, Shantha Arcot3, Susikumar Sundaramoorthy4, Murugamal Shanmugam5, Ramasamy Duraisamy6, Venkata Narasimhaji Cheemalapati7, Ilavarasan Raju8

1Department of Pharmacognosy, Captain Srinivasa Murti Research Institute for Ayurveda and Siddha Drug Development, CCRAS, Govt of India, Arumbakkam, Chennai-600 106, Tamil Nadu, INDIA.
2Department of Pharmacology, Sri Ramachandra College of Pharmacy, Sri Ramachandra University, Porur, Chennai-600116, Tamil Nadu, INDIA.
3Department of Pharm. Analysis, C.L.Baid Metha College of Pharmacy, Thoraipakkam, Chennai-600 097, Tamil Nadu, INDIA.
4Department of Pharmacognosy, Captain Srinivasa Murti Research Institute for Ayurveda and Siddha Drug Development, CCRAS, Govt of India, Arumbakkam, Chennai-600 106, Tamil Nadu, INDIA.
5Department of Chemistry, Govt. Arts College, Ariyalur-621 713, Tamil Nadu, INDIA.
6Department of Pharmacognosy, Captain Srinivasa Murti Research Institute for Ayurveda and Siddha Drug Development, CCRAS, Govt of India, Arumbakkam, Chennai-600 106, Tamil Nadu, INDIA.

ABSTRACT

Introduction: Comparative powder microscopic and HPTLC studies were carried out on stem barks of *Symplocos racemosa* Roxb. and *Symplocos crataegoides* Ham. to differentiate its identity in Ayurvedic formulations.

Method: Powder microscopic and HPTLC studies of these barks were undertaken on a comparative basis and results are reported in this paper. The authentic samples are cleaned, powdered and passed through sieve No. 80. A few mg of powder was stained with saffranin, Toluidine blue and iodine and photographed under different magnifications with the help of NICKON Labphot -2. HPTLC studies were followed by Sethi and Wagner et al. method. Results: The colour, taste, cork cells, fibres, sclereids, starch grains, calcium oxalate crystals, number of spots and Rf values of HPTLC are found to be differentiating diagnostic characters in powdered form of *S. racemosa* and *S. crataegoides*. Conclusion: The findings of the present study is believed to be helpful in standardization of Ayurvedic formulation containing stem bark of *S. racemosa* and *S. crataegoides* as ingredients in powder form. The study sets the specific microscopic protocol and HPTLC finger print of the two drugs and may lead to global acceptance and reputation of the Ayurvedic system.

Key words: Authentication, Curna, Dasamularistam, Lodhra, Lodhrasavam, Pharmacognosy.

Corresponding author: Mr. Nartunai Govindarajan, Department of Pharmacognosy, Captain Srinivasa Murti Research Institute for Ayurveda and Siddha Drug Development, CCRAS, Govt of India, Arumbakkam, Chennai – 600 106, Tamil Nadu, INDIA.

Phone no: +91 9894154514

Email: nartunai@yahoo.co.in

DOI : 10.5530/pj.2016.4.7

INTRODUCTION

The stem barks of the plants *Symplocos racemosa* Roxb. and *Symplocos crataegoides* Ham. (Fam. Symplocaceae) is extensively used in Indian medicine under the names of *Lodhra/Patikalodhra*. Mainly it is used to cure uterine complaints, vaginal and menstrual disorders. In Sanskrit the name *Lodhra* means that it stops ocular discharges. The important preparations using the drugs are *Nyagrodhadi Kvatha curna*, *Nyagrodhadi curru*, *Lodhrasavam*, *Dasamularistam* etc.1-3 Most of the books on Indian Materia Medica equate *Symplocos racemosa* as well as *S. crataegoides* with *Symplocos* Ham., as the botanical source of *Lodhra* or *Rodhrar*. Two varieties of *Lodhra* are described in the texts viz. *Sabara lodhra* and *Patika lodhra*. *Sabara lodhra* is equated with *Symplocos racemosa* and *Patika lodhra* is equated with *Symplocos crataegoides*.4 The alcoholic extract of stem bark of *Symplocos racemosa* contains phenolic glycoside (benzoylsalireposide, salireposide, salireposide, benzoylsalireposide, salireposide, salireposide, salireposide, benzoylsalireposide, salireposide, salireposide, benzoylsalireposide).5-8 The following compounds isolated from the ethanolic extract of the stem bark of *Symplocos crataegoides* (Syn: *S. paniculata*) (4-8-hydroxyl) cyclohexan-1-1-oic acid (1); androst-5(6)-ene-17-one 3β-O- (β-D-glucopyranoside) (2); 9β,25-cyclo 3β-O- (β-D-glucopyranosyl) -echynocystic acid (3); 9β,19-cyclo 24-methylcholin-5,22-diene 3β-O- (β-D-glucopyranosyl (1-6)-α-D-rhamnopyranoside) (4); 30-Et 2α, 16α-dihydroxy 3β-O- (β-D-glucopyranosyl) hopan-24-oic acid (5); 32,33,34-trimethyl-bacterio-hopan-16-ene 3-O-β-D-glucopyranoside (6); and flavones 3',4',5',6'-tetraromethoxy 7-O-β-D-glucopyranosyl (1-3) -β-D-glucopyranoside (7).9 Botanically *S. racemosa* and *S. crataegoides* are different species called by similar vernacular name *Lodhrar*. This leads to confusion in identifying the correct botanical source of the drug. For this purpose, Powder microscopic studies and HPTLC finger printing of these barks have been undertaken on a comparative basis.

MATERIALS AND METHODS

Collection and Identification

The stem bark of *Symplocos racemosa* Roxb. was purchased locally from market and authenticated by Prof. P. Jayaraman, Director, Plant Anatomy Research Centre, Chennai. The authentic stem bark of *Symplocos crataegoides* Ham. was supplied by Dr. G. C. Joshi, Research Officer, Regional Research Institute of Himalayan Flora, CCRAS, Thapala, Uttarakhand. The photos of the medicinal plants and its barks are given in Figure 1. The specimen vouchers of the stem barks of *S. racemosa* and *S. crataegoides* were deposited in CSMRIASDD Museum (K219/SB22 and C222/BSB26).

Powder microscopic studies

The samples were cleaned, shade dried, powdered and passed through sieve No. 80. A few mg of powder was analyzed microscopically after clearing them in Chloral hydrate solution. A few mg of powder was...
Nartunai et al.: Comparative Powder Microscopic and HPTLC Studies on Stem Barks of *Symplocos racemosa* Roxb. and *Symplocos crataegoides* Ham.

Table 1: Powder microscopic study of stem barks of *S. racemosa* and *S. crataegoides*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symplocos racemosa Roxb.</th>
<th>Symplocos crataegoides Ham.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour, odour, taste and texture</td>
<td>Yellowish brown; characteristic; slightly astringent; soft in texture.</td>
<td>Light brown; characteristic; initially slightly sour and after slightly bitter; soft in texture.</td>
</tr>
<tr>
<td>Cork cells</td>
<td>Polygonal comparatively larger in size 70 to 110 µm, slightly wavy anticlinal walls.</td>
<td>Polygonal smaller in size 50 to 70 µm straight anticlinal walls filled with brownish content.</td>
</tr>
<tr>
<td>Fibres</td>
<td>Long, narrow lumen, thick walled, lignified and blunted on one end, a few crystal fibres.</td>
<td>Libriform fibres with tertiary thickening are common, long, very narrow lumen, cylindrical, thick walled, lignified and tapering on both ends.</td>
</tr>
<tr>
<td>Sclereids</td>
<td>Brachysclereids, some sclereids rectangular, lignified with thick spiny outgrowth and sclerotic phellem or phelloids, rectangular and tabular in shape with simple pits in the lumen, 320 µm long and 130 µm wide.</td>
<td>Polyhedral, more or less iso diameter sclereids (Brachysclereids), thick walled, lignified 80 to 100 µm in size.</td>
</tr>
<tr>
<td>Starch grains</td>
<td>Numerous, simple as well as compound, having 2 to 6 components, Y shaped hilum in centre, measuring 4 to 13 µm in diameter.</td>
<td>Simple, round to oval, measuring 4 to 25 µm in diameter.</td>
</tr>
<tr>
<td>Crystals</td>
<td>Abundant Prismatic crystals of calcium oxalate.</td>
<td>Scarce Prismatic crystals of calcium oxalate.</td>
</tr>
</tbody>
</table>

Table 2: Rf values of chloroform and alcohol extracts

<table>
<thead>
<tr>
<th>Types of lights with wavelength</th>
<th>Chloroform extracts</th>
<th>Alcohol extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Mobile phase: Toluene: Ethyl acetate (8:2)]</td>
<td>[Mobile Phase: Toluene: Ethyl acetate: Formic acid (7:3:0.1)]</td>
</tr>
<tr>
<td>UV-254 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.77 Green</td>
<td>S. racemosa</td>
<td>0.32 Green</td>
</tr>
<tr>
<td>0.63 Green</td>
<td>S. crataegoides</td>
<td>0.89 Green</td>
</tr>
<tr>
<td>0.17 Green</td>
<td></td>
<td>0.32 Green</td>
</tr>
<tr>
<td>0.62 Blue</td>
<td>0.79 Red</td>
<td>0.92 Fluorescent Blue</td>
</tr>
<tr>
<td>0.40 Blue</td>
<td>0.64 Fluorescent blue</td>
<td>0.83 Blue</td>
</tr>
<tr>
<td>0.20 Blue</td>
<td>0.43 Red</td>
<td>0.77 Fluorescent Blue</td>
</tr>
<tr>
<td>UV-366 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15 Fluorescent blue</td>
<td>S. racemosa</td>
<td>0.31 Blue</td>
</tr>
<tr>
<td>0.11 Fluorescent blue</td>
<td>S. crataegoides</td>
<td>0.31 Blue</td>
</tr>
<tr>
<td>0.20 Blue</td>
<td>0.25 Blue</td>
<td></td>
</tr>
<tr>
<td>0.11 Blue</td>
<td>0.11 Blue</td>
<td></td>
</tr>
<tr>
<td>0.63 Grey</td>
<td>0.78 Grey</td>
<td>0.90 Grey</td>
</tr>
<tr>
<td>0.46 Grey</td>
<td>0.65 Violet</td>
<td></td>
</tr>
<tr>
<td>0.37 Grey</td>
<td>0.50 Grey</td>
<td></td>
</tr>
<tr>
<td>Visible Light (after derivatisation vanillin–sulphuric acid reagent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.63 Grey</td>
<td>0.78 Grey</td>
<td>0.90 Grey</td>
</tr>
<tr>
<td>0.46 Grey</td>
<td>0.65 Violet</td>
<td>0.90 Grey</td>
</tr>
<tr>
<td>0.37 Grey</td>
<td>0.37 Violet</td>
<td></td>
</tr>
</tbody>
</table>

stained with saffranin, Toluidine blue and Iodine as per the procedures and photographed under different magnifications with the help of NICKON Labphot -2 microscopic unit.

Preparation of extracts for TLC/HPTLC studies

5 g of drug of each sample were shade dried and coarsely powdered and defatted with hexane. The plant materials were packed in a Soxhlet apparatus and extracted successively with chloroform and ethanol for 5 hrs separately. The extracts were filtered by using Whatmann No.1 filter paper. The extracts were concentrated on water bath and made up to 10 ml volumetric flask.

Method for developing TLC/HPTLC

Instrument: CAMAG (Switzerland), sample applicator: Camag Linomat-IV applicator with N₂ gas flow, photo documentation system: Digi store-2 documentation system with win cats and video scan software, scanner: Camag HPTLC scanner-3 (030618), win cats-IV, development chamber: Camag HPTLC 10×10, 10×20 twin trough linear development chamber, quantity applied: 10 µl for extracts and 4 µl for standards, stationary phase: Aluminium plate precoated with silica gel 60 F₂₅₄ (E. Merck), plate thickness: 0.2 mm, scanning wavelength: 254 nm, laboratory condition: 20 ± 5°C and 53% relative humidity. The chloroform and alcohol extract...
Nartunai et al.: Comparative Powder Microscopic and HPTLC Studies on Stem Barks of *Symplocos racemosa* Roxb. and *Symplocos crataegoides* Ham.

Figure 1: *S. racemosa* and *S. crataegoides*- Twig with flowers and stem barks.

Figure 2: *Symplocos racemosa.*

1. Powder
2. Cork cells in surface view
3. Sclereids
4. Fibres
5. Starch grains (simple & compound)
6. Prismatic crystals of calcium oxalate (abundant).

Figure 3: *Symplocos crataegoides*

1. Powder
2. Cork cells in surface view
3. Sclereids
4. Libriform fibre (Tertiary thickening)
5. Starch grains (simple)
6. Prismatic crystals of calcium oxalate (scarce).
Figure 4: TLC profile of chloroform extracts of *S. racemosa* (A) and *S. crataegoides* (B).

Figure 5: TLC profile of alcohol extracts of *S. racemosa* (A) and *S. crataegoides* (B).
Nartnai et al.: Comparative Powder Microscopic and HPTLC Studies on Stem Barks of *Symplocos racemosa* Roxb. and *Symplocos crataegoides* Ham.

Figure 6: HPTLC profile of chloroform extracts of *S. racemosa* and *S. crataegoides*.

Figure 7: HPTLC profile of alcohol extracts of *S. racemosa* and *S. crataegoides*.

RESULTS

Powdered stem bark of *Symplocos racemosa* and *Symplocos crataegoides* were studied for microscopic point of view and given in Table 1 and Figure 2 and 3.

Different compositions of the mobile phase for TLC and HPTLC analysis were tested in order to obtain high resolution and reproducible peaks. The TLC profile of chloroform and alcohol extract of *S. racemosa* and *S. crataegoides* is shown in Figure 4 and 5. The corresponding *Rf* values of various spots for chloroform and alcohol extract is given in Table 2. HPTLC fingerprint profile of chloroform extract of *S. racemosa* and *S. crataegoides* showed 11 and 7 peaks respectively (Figure 6).

HPTLC fingerprint profile of alcohol extract of *S. racemosa* and *S. crataegoides* showed 7 and 11 peaks respectively (Figure 7).

DISCUSSION

Microscopic method of authentication is the first and fundamental step for standardization of herbal formulation. The findings of the present study is believed to be helpful in standardization of Ayurvedic formulation containing stem bark of *S. racemosa* and *S. crataegoides* as ingredients in powder form. HPTLC profile of chloroform and alcoholic extract provides a suitable method for monitoring the identity, purity and also standardization of the drug. The study sets the specific microscopic protocols of the two drugs and may lead to global acceptance and reputation of the Ayurvedic system.

CONCLUSION

The present study, analysed the powder microscopic characters of stem barks of *Symplocos racemosa* Roxb and *Symplocos crataegoides* Ham. and HPTLC fingerprint of chloroform and alcoholic extract of the same respectively. The results will be helpful in differentiating these barks in...
powdered form or in authentication/identification of the crude drug/raw drug and in standardization of Ayurvedic formulation *Carna*.

ACKNOWLEDGEMENT

The authors are very grateful to the Director General, Central Council for Research in Ayurvedic Sciences, New Delhi, for his encouragement and providing opportunity to conduct this study.

CONFLICT OF INTEREST

The author declare no conflict of interest.

ABBREVIATION USED

HPTLC: High Performance Thin Layer Chromatography; Rf: Retention factor; TLC: Thin Layer Chromatography; UV: Ultra violet.

REFERENCES

PICTORIAL ABSTRACT

- Botanically *Symplocos crataegoides* and *Symplocos racemosa* are different species called by similar vernacular name Lodhra.
- Comparative powder microscopic and HPTLC studies were undertaken to differentiate its identity.
- Findings of the study helpful in standardization of Ayurvedic formulation containing these plant drugs.
- This study sets the specific microscopic and HPTLC protocols of the two drugs and may lead to global acceptance and reputation of the Ayurvedic system.

ABOUT AUTHORS

Nartunai Govindarajan: Is a Research Officer (Pharmacognosy) at Captain Srinivasa Murti Research Institute for Ayurveda and Siddha Drug Development, Chennai, Under CCRAS, Ministry of AYUSH, Govt. of India. His doctoral research focused on developing quality standards for medicinal plants used in Ayurveda. He has projects in Intra Mural and Extra Mural Research Schemes. Has experience in the area of Pharmacognosy. Developed monographs for Ayurvedic Pharmacopoeia of India and Quality Standards for Indian Medicinal Plants by ICMR.

Ilavarasan Raju: Is an Assistant Director (S-III) in-charge at Captain Srinivasa Murti Research Institute for Ayurveda and Siddha Drug Development, Chennai, Under CCRAS, Ministry of AYUSH, Govt. of India. He has projects in Intra Mural and Extra Mural Research Schemes. Has vast experience in the area of Pharmacognosy and Herbal Drug Standardization. Guiding students for Ph.D., studies of various universities.