Pharmacognostical and Preliminary Phytochemical Investigations on fruit of Vaccinium macrocarpon aiton

Manisha Khaneja¹, Sumeet Gupta¹ and Anupam Sharma²

¹Department of Pharmacology, M. M. College of Pharmacy, M. M. University, Mullana, (Ambala), Haryana, India.
²University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.

ABSTRACT
Background: Vaccinium species are hostile nutraceutical fruit in India as well as all over the world. In recent years, Vaccinium macrocarpon Aiton is used as a functional food for treating various diseases without authentication. Objective: The current work was investigated to perform the morphoanatomical and physicochemical of Vaccinium macrocarpon Aiton fruit. Method: Pharmacognostic studies were carried out for different parameters include organoletic, macroscopic, microscopic, fluorescence and physicochemical analysis. Results: The fruit was shining burgundy purple in colour having smooth lustrous surface, globular to ellipsoidal in shape with 10-15 mm in length and diameter was 9 mm. The main microscopic characteristic of fruit showed ovules, compact angular parenchyma cells, developed sclerenchymatous outer sheath, central xylem and phloem strands. Fruit powder showed oil bodies, spherical parenchyma cells in large thick masses and walls of the epicarp demonstrated cellulose content. Further, physicochemical examination of fruit powder showed loss on drying, total ash, insoluble ash as 9.23, 78, and 9.16% w/w respectively. The water and alcohol soluble extractives values of the fruit were 24.74% and 76.88% respectively. Anthocyanins and flavonoids were also confirmed by phytochemical screening. Conclusion: A variety of pharmacognostic features was found in fruitful way which may help in identification and standardization of Vaccinium macrocarpon Aiton fruit in a crude form.

Key words: Fruit, Morphoanatoemical, Microscopy, Physicochemical analysis, Vaccinium macrocarpon aiton.

SUMMARY
• Vaccinium macrocarpon Aiton is a Nutraceutical food having potential pharmacological properties for the treatment of various disorders. It is also known as cranberry fruit.
• A fruit is having different types of flavonoids and isoflavonoids. The main constituents are anthocyanins and quercetin category.
• Our study of this fruits shows phytochemical and pharmacognostical results and it is having great importance in its field.

INTRODUCTION
Ericaceae or heath family is the largest family in Ericales containing 128 genera and 4,000 species all over the world. Still many new species are being discovered. Numerous members of ericaceae are important in horticulture (e.g., rhododendrons, azaleas) or in small fruit crops (cranberries, blueberries). Vaccinium (Ericaceae) is a genus of around 450 species of deciduous, evergreen dwarf, prostrate, or erect shrubs, vines, and trees includes a wide range of edible berries such as cranberry, blueberries, bilberries, huckleberries, farkle berries, sparkleberries, deer berries, and southern goosberries. There are many subgenera and several sections such as subgenus Oxyccocus (Section Oxyccocus), subgenus Vaccinium (Section Biotodendron, Brachymeria, Bracteata, Ciliata, Cincoetantra, Connophyllum, Cyanococcus, Eococcus, Epigynium, Hemimyrtillus, Myrtillus, Neurodesia, Ovarianthe, Oreades, Pachyanthus, Polycodium, Pyxothamnus, Vaccinium, Vitis-idea). Berry fruit belongs to vaccinium species are used as a medicinal food across the world. Very few species are available in India like Vaccinium neilgherrense Wt, Vaccinium myrtillus and Vaccinium leshenaulia Wt. An American cranberry Vaccinium macrocarpon Aiton which is generally known as “large cranberry” having diploid in nature present in various part of the geographical regions like Northeastern USA, British Columbia, Europe, North America, Central America, Central and South East Africa, Madagascar, Japan and Asia. Cranberries have their own important role as a traditional health improve agent and produced in the form of fruit, concentrated juices, jams, chocolates, candy’s, sauces and spray-dried powders. Now days, a large cranberry (V. macrocarpon) is one of the considerable nutraceutical source in functional foods industry. It is best known for the treatment and prevention of urinary tract infections (UTIs) from last many years. Cranberries and cranberry constituents have also been shown to possess antibiotic, anti-viral, anti-mutagenic, anti-carcinogenic, anti-tumorigenic, anti-angiogenic and antioxidant activities. Several common chemical constituents are present among all vaccinium species which possess pharmacological properties. Cranberries contain a high amount of phenolic acid such as benzoic acid, hy-
droxycinnamic acid p-coumaric, sinapic, caffeic and ferulic acid. The predominant flavonoids are flavonols, flavan-3-ols (particularly proanthocyanidins). The six major anthocyanins are peonidin-3-galactoside, cyanidin-3-galactoside, cyaniding-3-arabinoside, peonidin-3-arabinoside, peonidin-3-glucoside and cyaniding-3-glucoside. A review of literature revealed that no pharmacognostic standards have been recorded for this nutraceutical drug. Hence the present investigation was undertaken to evaluate various pharmacognostical standards like macroscopic and microscopy of fruits and its powder; physiochemical values and preliminary analysis of Vaccinium macrocarpon fruits so that authentic plant material could be explored for its therapeutic claim.

MATERIAL AND METHODS

Procurement of plant materials

Vaccinium macrocarpon, fruits were purchased from Shaanxi Nigbo Extracts Company Ltd, China, during December 2011. The fruits were authenticated with vide batch number CB091012 from the company. The fresh fruits material was cleaned with distilled water to remove debris and dried at 35-40°C for 10 days and, pulverized in the electric grinder and the powder was passed through sieve no. 60 and stored in airtight container for further extraction.

Chemicals and instruments

All the chemicals used in the study were of analytical grade and were obtained from Rankem limited India and Nice chemicals. Compound microscope, glass slides, cover slips, watch glass and other common glass ware were the basic apparatus and instruments used for the study. Microphotographs were taken using a motic images microscope.

Anatomical evaluation

Anatomy provides one to discover convincing diagnostic characters for a specific plant species (of crucial importance in quality control), and it also allows one to observe the distribution of compounds in the plant matrix.

Macroscopic study

Various organoleptic features and morphological characters of Vaccinium macrocarpon fruit like color, shape, size, odour, taste and fracture were evaluated.

Microscopic study

For microscopic evaluation, fruits were cut and fixed in chemical (Formalin 5 ml + acetic acid 5 ml + 70% ethyl alcohol-90 ml). After 24 hrs of fixing, the specimens were dehydrated with graded series of tertiary butyl alcohol (TBA) as per the procedure of Sass, 1940. Infiltration of the specimens was carried by gradual addition of paraffin wax (melting point 58-60°C) until TBA solution attained super saturation. The specimens were cast into paraffin blocks. The paraffin embedded specimens were sectioned with the help of rotary microtome. The thickness of the sections was 10-12 μm. Dewaxing of the sections was by customary procedure. The characteristic structures and cell components were observed and their photographs were taken using photomicrography.

Physiochemical analysis

In this study, dried fruit material was used for quantitative determination of physiochemical values like loss on drying, total ash, acid insoluble ash, water soluble ash, sulphated ash values and extractive values were determined as per reported method.

Fluorescence analysis

Fluorescence study of fruit powder was performed as per reported standard procedure. A small quantity of the fruit powder was placed on a grease free clean microscopic slide and 1-2 drops of the freshly prepared reagent solution were added, mixed by gently tilting the slide and waited for 1-2 min. then the slide was placed inside the UV chamber and observed in visible light, short (254 nm) and long (365 nm) ultraviolet radiations. The colours observed by application of different reagents in different radiations were recorded.

Preparation of extracts

Fruit powder material (10 gm) was macerated by exhaustive method for preparation of three different extracts using acetone water (70:30), Ethanol and water (40:60) with inorganic salt (2.5 gm) and methanol, water and ethyl acetate (80:19.5:0.5). Each combination were used for 72 h then 48 h and lastly 24 h. the last trace solvents was removed by vacuum drying method. Yields were calculated on the basis of percentage w/w. The extracts were stored below 4°C until further used. The extracts were concentrated by performing the qualitative chemical tests to determine various chemical constituents and investigated fluorescence analysis.

RESULTS

Macroscopic study of fruit

Morphological evaluation (Figure 1) of the fruit showed shines burgundy purple in colour. The shape was globular to ellipsoidal and the size about 10-15 mm in length and having diameter 9 mm. This fruits possess smooth lustrous surface showed characteristics in odor and sweet taste.

Microscopic study of fruit

Transverse section of fruit demonstrated spherical, fleshy berry with 14 mm thickness. It is tetra carpillary with many ovules on axile placenta. The fruit consists of thin layers of epidermis with prominent cuticle and a few layers of compact angular parenchyma cells. This portion represents the epicarp of fruit. The remaining portion of the fruit is thick a parenchymatous which represents the mesocarp of the fruit. The mesocarp includes several layers of wide parenchyma cells with wavy thin cell walls. There are small circular vascular strands distributed in the mesophyll tissue (Figure 2a and 2b). The vascular strands of the pericarp are circular with well developed sclerenchymatous outer sheath and central xylem and phloem strands (Figure 2c). The fruit is divided into 4 carpels by thick wavy septa (Figure 3a and 3b). The septa are thick and consist of epidermal layers and inner parenchymatous tissue. In the centre of the union of the 4 septa there are four circular vascular strands. These vascular strands are called carpellary vascular strands. In the pericarp, the
vascular strands may be flat (Figure 4a) or circular (Figure 4b). The flat vascular strands have a transverse row of xylem elements with phloem located on the outer part of the xylem strand (Figure 4a). The pericarp of the fruit is 350 µm thick.

Powder microscopy

The powder of the fruit showed oil bodies which was variable in shape and size. They were found floating appeared brown in color and stained with neutral red (Figure 5a). With addition to this, it showed spherical parenchyma cells in large thick masses (Figure 5a) or small group of 2 or 3 cells composed of oil bodies which stain dark brown (Figure 5b).

On the surface, small pieces of epicarp were seen in surface view. These pieces consist of polyhedral thick walled parenchyma cells (Figure 6a and 6b). The walls of the epicarp have cellulose content and the cells have wide empty lumen.

Fluorescence analysis

The Fluorescence characteristics of the fruit powder with different chemical reagents and fruit extracts are summarized in Table 1 and Table 2.

Physicochemical Parameters

In this study, various physicochemical parameters like loss on drying, total ash, acid insoluble ash, water soluble ash, sulphated ash and extractives values were determined in triplicate as mentioned in Table 3.

The total yield and morphological characteristics of extract was shown in Table 4.

The qualitative results (Table 5) of all three extracts of *Vaccinium macrocarpon* fruit showed the presence of carbohydrates, flavonoids and anthocyanins, while these extracts could not show any positive indication for proteins, amino acids and alkaloids. The presence of flavonoids and...
Table 1: Fluorescence analysis of Vaccinium macrocarpon fruit powder

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Under UV light</th>
<th>Visible light</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short wavelength (254 nm)</td>
<td>Long wavelength (365 nm)</td>
</tr>
<tr>
<td>Powder as such</td>
<td>Dark Brown</td>
<td>Brownish Black</td>
</tr>
<tr>
<td>Powder + 5% NaOH</td>
<td>Cherry Brown</td>
<td>Brownish Black</td>
</tr>
<tr>
<td>Powder + 5% KOH</td>
<td>Cherry Brown</td>
<td>Dark Black</td>
</tr>
<tr>
<td>Powder + 5% FeCl₃</td>
<td>Cherry Brown</td>
<td>Brownish Black</td>
</tr>
<tr>
<td>Powder + conc H₂SO₄</td>
<td>Dark Black</td>
<td>Reddish Black</td>
</tr>
<tr>
<td>Powder + conc HCl</td>
<td>Greenish Brown</td>
<td>Blackish Brown</td>
</tr>
<tr>
<td>Powder + conc HNO₃</td>
<td>Greenish</td>
<td>Reddish Black</td>
</tr>
</tbody>
</table>

Table 2: Fluorescence nature of various extracts of Vaccinium macrocarpon fruit powder

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Under UV light</th>
<th>Visible light</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short wavelength (254 nm)</td>
<td>Long wavelength (365 nm)</td>
</tr>
<tr>
<td>Acetone–Water (70:30)</td>
<td>Yellowish Black</td>
<td>Dull Brown</td>
</tr>
<tr>
<td>Ethanol + Inorganic salt + Water (40:60)</td>
<td>Yellowish Black</td>
<td>Black</td>
</tr>
<tr>
<td>Methanol + Ethyl Acetate + Water (80:0.5:19.5)</td>
<td>Brown</td>
<td>Blackish Brown</td>
</tr>
</tbody>
</table>

Table 3: Physicochemical analysis of Vaccinium macrocarpon fruit

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value obtained on dry weight basis (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss on Drying</td>
<td>9.236 ± 33.09</td>
</tr>
<tr>
<td>Water soluble extractives</td>
<td>76.88 ± 5.19</td>
</tr>
<tr>
<td>Alcohol soluble extractives</td>
<td>24.74 ± 4.22</td>
</tr>
<tr>
<td>Total ash</td>
<td>7.8 ± 12.07</td>
</tr>
<tr>
<td>Acid Insoluble ash</td>
<td>9.1666 ± 11.33</td>
</tr>
<tr>
<td>Foreign matter</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Ethno medicinally, the fruit of this plant has been used by many people in the treatment of various diseases especially in cancer and ulcers without knowing any pharmacognostical authentication. The pharmacognostical standardization of a crude drug is an important tool for identifying any morphological and physicochemical characters and it is helpful to add in different pharmacopeias. Two methodologies has been used for evaluating pharmacognostic parameters one is microscopic and another is macroscopic. Till now, no pharmacognostic work has been done on this medicinally potent plant fruit. The present work was undertaken to lay down the standards which could be useful for establishing authenticity. The macroscopic characters of fruit served as diagnostic parameters which possess fractured surfaces of fresh and dried fruit, typically tongue sensitizing aromatic taste and odour. Ash and extractive values are also confirmed by TLC method which showed pinkish violet colour having R₅ values, which was found in the range of 0.15-0.95 (data not shown).
reliable aid for detecting adulteration. Ash values are used to give an idea about inorganic composition and other impurities present in drug and extractive values shows the chemical constituents present in the crude drug and also helpful in estimation of specific constituents which are soluble in particular solvents. The fluorescent analysis under daylight and UV light by treatment with different chemical reagents showed different color which suggested the presence of active chemical constituents. As per phytochemical screening, the fruit of *Vaccinium macrocarpon* showed mainly anthocyanins and flavonoids which was also reported in previous study.21-22

As per our results, water soluble extractive value indicated the presence of sugar and inorganic compounds where as alcohol soluble extractive value indicated the presence of polar constituents such as glycosides, anthocyanins and flavonoids similar results were also reported by previous researcher.23

CONCLUSION

From these parameters, the results are being useful for setting up some diagnostic indices for identification and preparation of monograph according to pharmacopeia. Other related species can also be compared from these parameters and thus would helpful in opening up of new avenues in the use of natural products for therapeutic purposes. Some of the manufacturers can also utilize these data for preparation of formulation according to their needs. Many therapeutics like anti diabetic, anti obesity and anti hypertensive activity are still lacking of this plant, for future pharmacological study, these data can be useful for collection and identification of this plant.

ACKNOWLEDGEMENTS

The authors are grateful to management for offering the requisite technical help to accomplish this study. The authors acknowledge the excellent technical work under Plant Anatomy Research Centre, Chennai providing the histopathology microscopy facility. The authors gratefully acknowledge the colleagues for encouraging and providing the necessary research facilities to conduct this study.

CONFLICT OF INTEREST

Authors declare no conflict of interest.

FUNDING

Not received any funding from any sources.

REFERENCES

1. Steven PMCL. The ericales: an expanding order herbarium. Department of Plants science, University of Arizona; 1-12.
SUMEET GUPTA et al.: Pharmacognostical evaluation of Vaccinium macrocarpon aiton

3. McKay DL, Blumbers JB. Cranberries Vaccinium macrocarpon and cardiovascu-
4. Cavanagh HM, Hipwell M, Wilkinson JM. Antibacterial activity of berry fruits used for culi-
5. Lettice DP, Polizello AC, Ito IY, Spadaro AC. Anti-bacterial screening of Antho-
cyanic and Proanthocyanic fractions from cranberry juice. J Med Food. 2008;
8(1): 40-36.
8. Sun J, Liu RH. Cranberry phytochemical extracts induce cell cycle arrest and
124-34.
9. Seeram NP, Adams LS, Hardy ML, Heber D. Total cranberry extract versus its
11. Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in
K. Cranberry phytochemicals and their health 5 benefits. In: Shahidi F,
Cunningham DG, Vannozzi SA, Turk R, Roderick R, O’Shea E, Brilliant
14. Hong V, Wolstrand RE. Use of HPLC separation/photodiode array detection for
and micro technique, 1940. 222.
1940. 154.
18. Kulkarni VA, Gokhale SB, Yele SU, Surana SJ, Tatiya AU. Pharmacognostical
19. Kokashi CJ, Kokashi RJ, Sharma M. Fluorescence of powdered vegetable drugs
22. Fuleki T, Francis FJ. Quantitative methods for anthocyanins. I. Extraction and
determination of total anthocyanin in Cranberries. Journal of Food Science

ABOUT AUTHORS

Dr. Sumeet Gupta: Working as Professor Pharmacology, M. M. College of Pharmacy, M M University, Mullana, Ambala. He has more than 12 years of teaching and research experience in the area of “Preclinical Pharmacology and Clinical Pharmacology”. He has published various research and review articles in peer review National and International Journals. He has also published 2 books with International Publishers. He has also one chapter published in Daya Publication house.

Mrs Manisha Khaneja: Working as Asst Professor, Department of Pharmacognosy, M M College of Pharmacy, M M University, Mullana, Ambala. She has more than 4 years of teaching and research experience in the area of “Pharmacognosy and phytochemistry of natural plants.” She has published various research and review articles in peer review National and International Journals. She has also one chapter published in Daya Publication house.