
565

Research ArticlePharmacogn J. 2022; 14(5): 565-574
A Multifaceted Journal in the field of Natural Products and Pharmacognosy 
www.phcogj.com 

Cite this article: Mawaddani N, Sutiyanti E, Widyananda MH, Kharisma VD, Turista DDR, 
Tamam MB, et al. In Silico Study of Entry Inhibitor from Moringa oleifera Bioactive Compounds 
against SARS-CoV-2 Infection. Pharmacogn J. 2022;12(5): 565-574.Phcogj.com

Pharmacognosy Journal, Vol 14, Issue 5, Sep-Oct, 2022

In Silico Study of Entry Inhibitor from Moringa oleifera Bioactive 
Compounds against SARS-CoV-2 Infection
Nala Mawaddani1, Ekris Sutiyanti2, Muhammad Hermawan Widyananda1, Viol Dhea Kharisma3, Dora Dayu Rahma Turista4, Muhammad 
Badrut Tamam5, Vikash Jakhmola6, Syamsurizal7,8, Bayu Ramadhani Fajri7,9, Muhammad Raffi Ghifari7,10, Muhammad Thoriq Albari7,10, 
Muhammad Arya Ghifari7,10, Amalia Putri Lubis7,11, Dony Novaliendry7,12, Dwi Hilda Putri7,8, Fadhilah Fitri7,13, Devni Prima Sari7,14, Alexander 
Patera Nugraha15, ANM Ansori16 , Maksim Rebezov17,18,19, Rahadian Zainul7,11,*

INTRODUCTION
Coronavirus (CoV) also known as COVID 19, has 
spread worldwide in December 2019 and became 
a pandemic in January 2022.1,2 WHO declared 
in March 2020 that this pandemic transmission 
is a person to person. The case of COVID 19 has 
enlarged widely to 213 countries and it caused 
more than 270 million infections over 5 million 
cases and those numbers still rising.3 WHO 
confirmed the symptoms of COVID 19 were fever, 
dry cough, respiratory disorders, and olfactory and 
taste disorders.4-7

The human coronavirus (HCoV) was positive-
stranded RNA virus. There were 2 types of protein 
of HCoV structural and non-structural protein 
that have different characteristics. The structural 
protein has characteristics including envelope, 
matrix, nucleocapsid, and spike. Besides, the 
non-structural protein has RNA-dependent RNA 
polymerase (RdRp).8 RdRp has an important role 
in the HCoV life cycle and also became the main 
target factor for COVID 19 therapeutics. According 
to the Genome report, SARS-CoV-2depends on 
the viral protein function of the main protease 
(Mpro).9 Mpro has the main role in SARS-CoV-2 
transcription and replication.10,11 Hence, Mpro 
and RdRp were the best candidates for designing 
antiviral drugs to find therapeutics agents against 
SARS-CoV-2.

Moringa oleifera is also known as the “miracle tree” 
because it has abundant benefits.12-14 There were 
bioactive compounds obtained from M. Oleifera 
including Aurantiamide acid, Anthraquinone, 
Apigenin, Benzyl isothiocyanate, Chrysin, Dibutyl 
phthalate, Ellagic acid, Hydroxychloroquinone, 
Isorhamnetin, Kaemferol, Myrcetin, 

Pterygospermin, Quercetin, Rutin, and β-amyrin 
which has an antiviral potential compounds against 
COVID 19 by inhibiting Mpro and RdRp activity.15-18 
Besides all the compounds above, Oleic acid was 
most found at around 84% in M. Oleifera.19 M. 
oleifera was the most appropriate candidate for an 
antiviral agent against SARS-CoV-2. The aim of this 
study was to screen bioactive compounds of Moringa 
oleifera and to identify the antiviral potential 
compounds toward SARS-CoV-2 through an entry 
inhibitor mechanism.

METHODS

Data mining of sample 

The bioactive compounds of M. oleifera which 
consist of anthraquinone, apigenin, aurantiamide 
acetate, benzyl isothiocyanate, chlorogenic acid, 
chrysin, dibutyl phthalate, ellagic acid, hesperidin, 
isorhoifolin, myricetin, pterygospermin, quercetin, 
rutin, and vitex. The bioactive compounds of M. 
oleifera were retrieved format from PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/) in sdf 
format.20 

Protein modeling 
The structure of Mpro and RdRp as the target proteins 
which were not available in the RCSB PDB database 
was modeled based on their amino acid sequence. 
The NCBI (https://www.ncbi.nlm.nih.gov/) database 
was used to retrieve sequences of amino acids with 
fasta format. Furthermore, protein modeling is made 
through the SWISSMODEL site (https://swissmodel.
expasy.org/). The selection of protein models was 
selected from several parameters such as QMQE 
value, QMEAN value, coverage value, local quality 
value, and comparison plot. In addition, the protein 
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structure also reviewed the Ramachandran Plot value according to 
favored, allowed, and outlier regions.21

Bioactivity and drug likeness prediction
Bioactivity of active compounds were predicted according to 
probability values (Pa) through PASS online site (http://way2drug.
com/passonline/). To be an effective drug, potential active compounds 
must be able to reach the target in the body. There were several 
characteristics that a drug must possess in order to reach the target in 
the body to be selected as a drug potential. The characteristics reviewed 
include molecular mass, TPSA value, solubility in lipids, and others. 
There were several parameters to be reviewed in drug-likeness, named 
Lipinksi, Ghose, Veber, Egan, and Muegge Parameter. Prediction of 
drug-likeness could be done through the SWISS ADME (http://www.
swissadme.ch) website. Active compounds that fulfill five parameters 
will be selected.8,22,23

Ligand and protein preparation
The minimization energy process of the ligand was prepared with 
PyRx software. Ligand preparation aimed to increase flexibility and 
change the sdf format to pdb. Ligand preparation also to minimize 
the binding affinity. The target protein in this paper was the Mpro and 
RdRp. Sterilization of the target protein from water and contaminant 
ligands was carried out by Discovery Studio software to increase the 
optimization of binding energy.20,24,25

Molecular docking and dynamic simulation
Molecular docking with the PyRx software was performed to predict the 
interaction of protein inhibition on SARS-COV 2 by active compounds 
from M. oleifera.26 Molecular docking of the Mpro target was done by 
blind docking. On the other hand, molecular docking of the RdRp 
target was done by specific docking at its catalytic sites: Gly-616, Trp-
617, Asp-618, Tyr-619, Leu-758, Ser-759, Asp-760, Asp-761, Ala-762, 
Lys-798, Tys-799, Trp-800, Glu-811, Phe-812, Cys-813, and Ser-814.27 
The validation of the docking results were carried out with a dynamic 
molecular test by using CABS-flex 2.0. At this stage, the Fluctuation 
Plot tab on CABS-flex 2.0 showed the residue fluctuation profile due to 
the RMSF value for protein target.28

Docking visualization
The analysis of the docking results was reviewed based on the 2D and 
3D forms. Visualization of 2D docking results was done by Discovery 
Studio software. Moreover, the 3D visualization was carried out with 
PyMOL. Types of interactions and chemical bonds formed were 
analyzed using the Discovery Studio software.26,29

RESULT AND DISCUSSION

Bioactivity and drug-like molecule potential of the 
bioactive compounds in the M. oleifera
The data of bioactive compounds found in Moringa oleifera, such as 
anthraquinone (CID 6780), apigenin (CID 5280443), aurantiamide 
acetate (CID 124319), benzyl isothiocyanate (CID 2346), chlorogenic 
acid (CID 1794427), chrysin (CID 5281607), dibutyl phthalate 
(CID 3026), ellagic acid (CID 5281855), hesperidin (CID 10621), 
isorhoifolin (CID 9851181), myricetin (CID 5281672), pterygospermin 
(CID 72201063), quercetin (CID 5280343), rutin (CID 5280805) and 
vitexin (CID 5280441) were acquired from the PubChem database 
(https://pubchem.ncbi.nlm.nih.gov/). Biological activity potential of 
all compounds were evaluated with PASS online site based on their 
chemical structure. The estimated value of probability was shown by 
probability activity value (Pa) and probability inactivity (Pi) from 0.000 
to 1.000. High value of Pa means higher bioactivity.30 The result of 
bioactivity prediction of bioactive compounds of M. oleifera (Table 1). 

Drug-likeness analysis aimed to identify molecules considered to be 
drugs built upon their physicochemical properties. The properties 
approaches aimed to measure drug likeness consist of octanol–water 
partition coefficient (ALOGP), number of H-bond acceptors (HBAs), 
number of H-bond donors (HBDs), molecular weight (MW), molecular 
polar surface area (PSA), number of aromatic rings (AROMs), 
number of structural alerts (ALERTS) and number of rotatable bonds 
(ROTBs).31 Based on these properties, there are several relevant drug 
likeness rules such those proposed by Lipinski, Ghose, Veber, Eggan 
and Muegge. These rules suggest the compound as a drug based on 
their physicochemical properties. The Lipophilicity (log Po/w) is the 
partition coefficient between water and n-octanol. Water solubility is 
the value of a drug's ability for oral targeting. SwissADME provides 
the number of violations in every rule.30 The drug likeness prediction 
of bioactive compounds of M. oleifera (Table 2) and drug likeness 
parameter of bioactive compounds of M. oleifera (Table 3).

The Binding activity ability and molecules interaction of the 
bioactive compounds in the M. oleifera and target protein
The bioactive compounds of M. oleifera and target protein generate 
interactions and binding activity. Based on the result of the study 
showed two different proteins targets were Mpro and RdRp which 
interacted with bioactive compounds of M. oleifera. The lowest binding 
affinity value of Mpro and RdRp interactions were Mpro – Apigenin -7.8 
kcal/mol, Mpro – Quercetin -7.3 kcal/mol, RdRp – Quercetin -6.9 kcal/
mol, RdRp – Pterygospermin -6.6 kcal/mol (table 4 & 5). Respectively, 
implying that Mpro more easily binds to Apigenin than Quercetin and 
RdRp binds strongly to Quercetin than Pterygospermin. There are 
different amino acid residues of each receptor bound to the ligand 
based on the visualization by Discovery Studio. The 3D complex of 
the interactions formed is visualized and can be clearly distinguished 
between the receptor and its ligand (figure 1 & 2). The types of bonds 
and variations in the binding positions formed from the complexes 
were demonstrated in the 2D visualization performed by Discovery 
Studio (figure 1 & 2). In addition, the results of 2D visualization by 
Discovery Studio showed different colors in different interactions. The 
colors indicate the type of bonds formed from the complex. The amino 
acid residues that bind to the ligand can be seen from the interaction 
points, distances, chemistry bonds, and type through the discovery 
studio application (figure 1 & 2; table 4 & 5).

Based on the docking Discovery studio visualization showed that there 
were several ligands which binds to both Mpro and RdRp active sites. 
Apigenin (glu-166, cys-145), Chrysin (glu-166, cys-145), and quercetin 
(cys 145) binds to the active site of Mpro, while Anthraquinone (glu-
811, trp-800, lys-798), Apigenin (ser-814, cis-813, asp-760, asp-761), 
Chrysin (asp-761, lys-798, glu-811), Dibutyl phthalate (asp-761, ser-
814, cys-813, trp-800), Pterygospermin (glu-811, lys-798, asp-618), 
and Quercetin (glu-811, asp-760, asp-761, tyr-619) which binds to 
active site of RdRp SARS-CoV-2. The interaction of Mpro and Apigenin 
generates a conventional hydrogen bond and 2 Pi-sulfur bonds. Mpro 
and Chrysin generates Pi-Donor hydrogen bond and 2 Pi-sulfur 
bonds. Mpro and Quercetin generate Pi-alkyl bond. The interaction 
RdRp and anthraquinone generates a conventional hydrogen bond, 2 
Pi-alkyl bonds, and 2 Pi-anion bonds. RdRp and Apigenin generate 2 
conventional hydrogen bonds and 3 Pi-anion bonds. RdRp and Chrysin 
generate a conventional hydrogen bond, 2 Pi-anion bonds, and a Pi-
alkyl bond. RdRp Dibutyl phthalate generates 3 conventional hydrogen 
bonds, a Pi-anion bond, and a Pi-alkyl bond. RdRp and Pterygospermin 
generate a conventional hydrogen bond, a Pi-anion bond, and a Pi-
alkyl bond. RdRp and Quercetin generate 5 conventional hydrogen 
bonds (table 4 & 5). 

Mpro was a cysteine protease that moderates the maturation cleavage 
of polyprotein in virus replication and also plays a crucial role in the 
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Compound Antiviral Non-Steroidal Anti 
Inflammatory Agent Anti-Inflammatory Viral Entry Inhibitor

3C-like protease 
(Human coronavirus) 
inhibitor

Viral fusion 
inhibitor

Rutin 0.263 0.518 0.728
Isorhoifolin 0.235 0.705
Quercetin 0.262 0.257
Hesperidin 0.193
Ellagic acid 0.322 0.749 0.265 0.241
Aurantiamide acetate 0.217 0.249 0.209 0,341
Benzyl isothiocyanate 0,219 0,267 0,011
Dibutyl phthalate 0,497 0,215 0,293
Pterygospermin 0,227 0,251 0,010
Apigenin 0,209 0,644 0,243 0,267
Chrysin 0,212 0,637 0,242 0,273
Myricetin 0,334 0,720 0,272 0,197
Chlorogenic acid 0,303 0,598
Vitexin 0,360 0,606
Anthraquinone 0.295 0.410 0.267 0.326

Table 1: Bioactivity prediction result.

Compound MW (g/mol) MiLogP HBD HBA TPSA (Å²) Bioavailability
Rutin 610.52 -3.89 16 10 269.43 0.17
Isorhoifolin 578.52 -2.96 8 14 228.97 0.17
Quercetin 302.24 -0.56 5 7 131.36 0.55
Hesperidin 610.56 -3.04 8 15 234.29 0.17
Ellagic acid 302.19 0.14 4 8 141.34 0.55
Aurantiamide acetate 444.52 3.41 2 4 84.50 0.55
Benzyl isothiocyanate 149.21 3.28 0 1 44.45 0.55
Dibutyl phthalate 278.34 3.43 0 4 52.60 0.55
Pterygospermin 406.52 2.68 0 2 89.12 0.55
Apigenin 270.24 0.52 3 5 90.90 0.55
Chrysin 254.24 1.08 2 4 70.67 0.55
Myricetin 318.24 -1.08 6 8 151.59 0.55
Chlorogenic acid 354.31 -1.05 6 9 164.75 0.11
Vitexin 432.38 -2.02 7 10 181.05 0.55
Anthraquinone 208.21 1.86 0 2 34.14 0.55

Table 2: Drug likeness prediction result.

Compound
Drug Likeness Parameter Violation

Lipinski Ghose Veber Egan Muegge
Rutin 3 4 1 1 4
Isorhoifolin 3 4 1 1 3
Quercetin 0 0 0 0 0
Hesperidin 3 4 1 1 4
Ellagic acid 0 0 1 1 0
Aurantiamide acetate 0 0 1 0 0
Benzyl isothiocyanate 0 2 0 0 1
Dibutyl phthalate 0 0 0 0 0
Pterygospermin 0 0 0 0 0
Apigenin 0 0 0 0 0
Chrysin 0 0 0 0 0
Myricetin 1 0 1 1 2
Chlorogenic acid 1 1 1 1 2
Vitexin 1 0 1 1 2
Anthraquinone 0 0 0 0 0

Table 3: Drug likeness parameter. 
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Interaction Binding affinity
(kcal/mol) Interaction point Distance

(Å) Chemistry bond Types

Mpro – Anthraquinone -7.0

A:GLN110:NE2 - :LIG1:O 3.16225 Hydrogen Bond Conventional Hydrogen Bond

A:SER158:OG - :LIG1:O 3.21938 Hydrogen Bond Conventional Hydrogen Bond

A:ASN151:ND2 - :LIG1 4.06044 Hydrogen Bond Pi-Donor Hydrogen Bond

A:ILE106:CG2 - :LIG1 3.90218 Hydrophobic Pi-Sigma

:LIG1 – A:PHE294 5.29534 Hydrophobic Pi-Pi T-shaped

:LIG1 – A:VAL104 5.14081 Hydrophobic Pi-Alkyl

Mpro - Apigenin -7.8

:LIG:H – A:TYR54:OH 2.28149 Hydrogen Bond Conventional Hydrogen Bond

:LIG:H – A:ASP187:O 2.67618 Hydrogen Bond Conventional Hydrogen Bond

:LIG:H – :LIG1:O 2.39102 Hydrogen Bond Conventional Hydrogen Bond

:LIG:H – A:LEU141:O 2.0859 Hydrogen Bond Conventional Hydrogen Bond

:LIG:H – A:SER144:O 2.50024 Hydrogen Bond Conventional Hydrogen Bond

A:GLU166:N - :LIG1 4.06547 Hydrogen Bond Conventional Hydrogen Bond

A:CYS145:SG - :LIG1 5.57509 Other Pi-Sulfur

A:CYS145:SG - :LIG1 5.14695 Other Pi-Sulfur

:LIG1 – A:MET49 4.69304 Hydrophobic Pi-Alkyl

Mpro - Chrysin -7.2

:LIG1:H – A:LEU141:O 2.14346 Hydrogen Bond Conventional Hydrogen Bond

:LIG1:H – A:SER144:OG 2.55404 Hydrogen Bond Conventional Hydrogen Bond

A:GLU166:N - :LIG1 4.03044 Hydrogen Bond Pi-Donor Hydrogen Bond

A:CYS145:SG - :LIG1 5.55701 Other Pi-Sulfur

A:CYS145:SG - :LIG1 5.12793 Other Pi-Sulfur

:LIG1 – A:MET49 4.71637 Hydrophobic Pi-Alkyl

Mpro – Dibutyl 
Phthalate -5.3

A:GLN110:NE2 – LIG1:O 3.25421 Hydrogen Bond Conventional Hydrogen Bond

A:ASN151:ND2 - :LIG1:O 2.96662 Hydrogen Bond Conventional Hydrogen Bond

A:ASN151:ND2 - :LIG1:O 3.01994 Hydrogen Bond Conventional Hydrogen Bond

:LIG1:C – A:SER158:OG 3.64073 Hydrogen Bond Carbon Hydrogen Bond

A:SER158:CB - :LIG1:O 3.57752 Hydrogen Bond Carbon Hydrogen Bond

:LIG1:C - :LIG1 3.71143 Hydrophobic Pi-Sigma

A:ILE106:CG2 - :LIG1 3.65094 Hydrophobic Pi-Sigma

:LIG1 A:VAL104 5.26739 Hydrophobic Pi-Alkyl

A:PHE294 - :LIG1 3.99071 Hydrophobic Pi-Alkyl

Mpro - Pterygospermin -6.3

:LIG1:S – A:TYR237:O 3.6789 Hydrogen Bond Conventional Hydrogen Bond

A:LYS137:NZ - :LIG1:S 3.68971 Hydrogen Bond Conventional Hydrogen Bond

:LIG1:C – A:THR199:OG1 3.53423 Hydrogen Bond Carbon Hydrogen Bond

:LIG1:C – A:TYR237:O 3.44575 Hydrogen Bond Carbon Hydrogen Bond

:LIG1:C – A:ASP197:OD2 3.77204 Hydrogen Bond Carbon Hydrogen Bond

A:ASP289:OD1 - :LIG1 4.12393 Electrostatic Pi-Anion

A:TYR239:OH - :LIG1 3.52753 Hydrogen Bond Pi-Donor Hydrogen Bond

:LIG1:S – A:TYR237 5.84567 Other Pi-Sulfur

:LIG1 – A:LEU287 4.96378 Hydrophobic Pi-Alkyl

Mpro - Quercetin -7.3

:LIG:H – A:LEU141:O 2.17236 Hydrogen Bond Conventional Hydrogen Bond

:LIG:H – A:SER144:OG 2.29642 Hydrogen Bond Conventional Hydrogen Bond

:LIG:H – A:MET165:SD 2.67346 Hydrogen Bond Conventional Hydrogen Bond

A:SER144:OG - :LIG1:O 3.11122 Hydrogen Bond Conventional Hydrogen Bond

A:GLN189:CA - :LIG1 3.35174 Hydrogen Bond Carbon Hydrogen Bond

A:MET165:SD - :LIG1 5.3728 Other Pi-Sulfur

:LIG1 – A:CYS145 4.88012 Hydrophobic Pi-Alkyl

Table 4: Molecular docking result of compounds from Moringa oleifera againts Mpro.
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Interaction Binding afinity
(kcal/mol) Interaction point Distance

(Å) Chemistry bond Types

RdRp – Anthraquinone -5.7

A:TRP800:NE1 - :LIG1:O 3.17196 Hydrogen Bond Conventional Hydrogen Bond
A:GLU811:OE1 - :LIG1 4.11437 Electrostatic Pi-Anion
A:GLU811:OE1 - :LIG1 3.6791 Electrostatic Pi-Anion
LIG1 – A:LYS798 5.24834 Hydrophobic Pi-Alkyl
:LIG1 – A:LYS798 4.93519 Hydrophobic Pi-Alkyl

RdRp - Apigenin -6.4

A:CYS813:N - :LIG1:O 3.24885 Hydrogen Bond Conventional Hydrogen Bond
A:SER814:N - :LIG1:O 3.02667 Hydrogen Bond Conventional Hydrogen Bond
A:ASP760:OD1 - :LIG1 4.40583 Electrostatic Pi-Anion
A:ASP761:OD1 - :LIG1 3.90294 Electrostatic Pi-Anion
A:ASP761:OD1 - :LIG1 3.23159 Electrostatic Pi-Anion

RdRp - Chrysin -6.4

:LIG1:H – A:ASP761:OD2 2.80245 Hydrogen Bond Conventional Hydrogen Bond
A:GLU811:OE1 - :LIG1 3.5163 Electrostatic Pi-Anion
A:GLU811:OE1 - :LIG1 4.50699 Electrostatic Pi-Anion
:LIG1 – A:LYS798 3.73501 Hydrophobic Pi-Alkyl

RdRp – Dibutyl Phthalate -4.4

A:TRP800:NE1 - :LIG1:O 3.36979 Hydrogen Bond Conventional Hydrogen Bond
A:CYS813:N - :LIG1:O 3.17805 Hydrogen Bond Conventional Hydrogen Bond
A:SER814:N - :LIG1:O 2. 85424 Hydrogen Bond Conventional Hydrogen Bond
A:ASP761:OD1 - :LIG1 3.2988 Electrostatic Pi-Anion
:LIG1:C - :LIG1 3.8863 Hydrophobic Pi-Sigma
:LIG1 – A:LYS798 4.3898 Hydrophobic Pi-Alkyl

RdRp - Pterygospermin -6.6
:LIG1:S – A:GLU811:O 3.68091 Hydrogen Bond Conventional Hydrogen Bond
A:ASP618:OD1 - :LIG1 4.34769 Electrostatic Pi-Anion
:LIG1 – A:LYS798 4.34806 Hydrophobic Pi-Alkyl

RdRp – Quercetin -6.9

:LIG1:H – A:GLU811:O 1.93037 Hydrogen Bond Conventional Hydrogen Bond
:LIG1:H – A:ASP760:O 2.46817 Hydrogen Bond Conventional Hydrogen Bond
:LIG1:H – A:ASP761:OD1 2.64803 Hydrogen Bond Conventional Hydrogen Bond
:LIG1:H – A:ASP760:OD1 2.5649 Hydrogen Bond Conventional Hydrogen Bond
A:TYR619:N - :LIG1:O 3.19529 Hydrogen Bond Conventional Hydrogen Bond

Table 5: Molecular docking result of compounds from Moringa oleifera againts RdRp.

Figure 1: Protein interaction conserved region amino acid residues of Mpro. (A) 3D structure of protein interactions Mpro with  bioactive compounds in 
Moringa oleifera, (B) Magnification view 3D structure of protein interactions Mpro with bioactive compounds in Moringa oleifera, (C) 2D structure of protein 
interactions Mpro with bioactive compounds in Moringa oleifera.
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Figure 2: Protein interaction conserved region amino acid residues of RdRp. (A) 3D structure of protein interactions RdRp with bioactive compounds in 
Moringa oleifera, (B) Magnification view 3D structure of protein interactions RdRp with bioactive compounds in Moringa oleifera, (C) 2D structure of protein 
interactions RdRp with bioactive compounds in Moringa oleifera.
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Figure 3: Visualization of molecular dynamic simulation results. (A) RMSF 
of Mpro-Apigenin, (B) RMSF of Mpro-Quercetin.

Figure 4: Visualization of molecular dynamic simulation results. (A) RMSF 
of RdRp-Pterygospermin, (B) RMSF of RdRp-Quercetin.

virus transcription of the life cycle.32 Cys-145, Glu-166, and His-163 
were the most attractive residue of SARS-CoV-2 Mpro to form hydrogen 
bonds.32-34 The location of Mpro substrate-binding site was between 
domains I and II, which was Cys-145 and His-41 were catalytic activity 
site.32-35 In line with this study which Mpro binds to apigenin, chrysin, 
and quercetin in Cys-145. Besides Mpro, RdRp also plays a pivotal role 
in the viral life cycle. The most reachable and conserved region in viral 
replication was RdRp, therefore it can be an effective target for antiviral 
drugs for SARS-CoV-2.27,36,37 RdRp catalytic sites included Ala-762, 
Asp-618, Asp-761, Cys-813, Glu-811, Gly-616, Leu-758, Lys-798, Phe-
812, Ser-760, Ser-814, Trp-617, Trp-800, Tyr-619, Tys-799.27 In line 
with this study, RdRp binds to anthraquinone (Glu-811, Trp-800, Lys-
798), Apigenin (Ser-814, Cys-813, Asp-760, Asp-761), Chrysin (Asp-
761, Lys-798, Glu-811), Dibutyl phthalate (Asp-761, Ser-814, Cys-813, 
Trp-800), Pterygospermin (Glu-811, Lys-798, Asp-618) and Quercetin 
(Glu-811, Asp-760, Asp-760, Tyr-619). 

A recent report has shown that remdesivir is able to inhibit replication 
of SARS-CoV-2 in in vitro and in vivo experiment.38,39 Remdesivir is 
an adenosine analogue that inhibits SARS-CoV-2 RdRp.32-40 Therefore, 
remdesivir can be used as a positive control in this study. According 
to the result docking simulations.41 Based on the research showed 
that remdesivir probably binds to Mpro stronger than to RdRp.32 The 
Mpro residues that form a hydrogen bond with remdesivir are His-
163, Ser-144, and Leu-141, and non-bonded contacts are associated 
with Glu-166, Cys-145, Met-165, Gln-189, Arg-188, Asp-187, His-41, 
Met-49, Thr-26, Leu-27, Thr-45, and Thr25. In line with this study, the 
result shows that interaction Mpro - Apigenin has the lowest binding 
affinity value -7.8 kcal/mol with interaction point active site Glu-166 
and Cys-145, and Mpro – Quercetin binding affinity value -7.3 kcal/
mol with interaction point Cys-145. These results indicate that both 
apigenin, quercetin, and remdesivir bind to Glu-166 and Cys-145 of 
the active site of Mpro.42 While the interaction residues between RdRp 
and remdesivir are 56 residues, 10 of those residues were involved 
in a catalytic activity such as Ala-558, Asp-684, Asp-760, Asp-761, 
Cys-813, Gly-559, Ser-682, Ser-759, and Ser-814.43 In line with this 
study result shows that interaction RdRp to anthraquinone (Glu-811, 
Trp-800, Lys-798), Apigenin (Ser-814, Cys-813, Asp-760, Asp-761), 
Chrysin (Asp-761, Lys-798, Glu-811), Dibutyl phthalate (Asp-761, Ser-
814, Cys-813, Trp-800), Pterygospermin (Glu-811, Lys-798, Asp-618) 
and Quercetin (Glu-811, Asp-760, Asp-760, Tyr-619). These results 
indicate that catalytic sites Asp-760, Asp-761, and Cys813 were found 
in the interaction of RdRp and remdesivir, apigenin, chrysin, dibutyl 
phthalate, pterygospermin, and quercetin. 

Molecular dynamics simulation of M. oleifera’s bioactive 
compounds with SARS-CoV-2 glycoprotein
Simulation parameters and a set of distance restraints used by CABS-
flex. Molecular Dynamics (MD) simulations carried out to generate 
the best convergence between either CABS-flex simulation and protein 
fluctuation simulation in aqueous solution. MD was carried out by 10 
nanoseconds in length. In addition, MD was derived by different force 
fields for globular protein.28 MD aims to support molecular docking 
results. The root-mean-square fluctuation (RMSF) was a measure of 
the displacement of the position of the protein atom relative to the 
reference structure. RMSF analyzes the portions of structure that 
are fluctuating from their mean structure.44 Figure 3 showed the 
information of flexibility of Mpro with its interaction with Apigenin and 
Quercetin, figure 4 showed the information of flexibility of RdRp with 
its interaction with Pterygospermin and Quercetin. Based on,45 the 
RMFS average value of Mpro and Remdevisir is below 0.4. Meanwhile, 
based on the result of our molecular dynamics, the average of Mpro-
Apigenin’s RMFS value at the catalytic site is 1.24 nm and the average 
of Mpro-Quercetin’s RMFS value at the catalytic site is 1.04 nm. It was a 
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few greater than the RMFS’s value of Remdevisir. Based on,46 the RMFS 
value of RdRp and Remdevisir in initial residues which were from 
first sequence of amino acid to 125th amino acid sequence, showed a 
relatively higher fluctuation value of 0.6–0.75 nm. Whereas, residues 
after 125th sequences showed stationary value of 0.4 nm. Meanwhile, 
according to the result of our molecular dynamics, the average of 
RdRp-Pterygospermin’s RMFS value at the catalytic site is 0.5 nm and 
the average of RdRp-Quercetin’s RMFS value at the catalytic site is 0.58 
nm. It was a few greater than the RMFS’s value of Remdevisir. 

CONCLUSION
Our in silico studies suggest M. oleifera as a potential antiviral candidate 
for SARS-CoV-2 with an entry inhibitor mechanism through a 
compound, specifically quercetin. Quercetin shows the activity as 
antiviral against SARS-CoV-2 by bind to the both active sites of Mpro 
and RdRp of the SARS-CoV-2 with more negative binding affinity than 
the other compound, resulting in interactions between hydrogen bonds 
and hydrophobic bonds. Moreover, the RFMS value of the interaction 
between Mpro and quercetin and RdRp with quercetin were not higher 
than 1.05. Furthermore, experimental in vitro and in vivo studies both 
are necessary to prove this in silico predictions.
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