Antiviral Activity of an Extract from Leaves of the Tropical Plant Cynometra cauliflora

Noor Zarina Abd Wahab1,*, Aziah Azizul1, Norhidayah Badya2, Nazlina Ibrahim3

1Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, MALAYSIA.
2Faculty of Medicine, Universiti Sultan Zainal Abidin, Terengganu, MALAYSIA.
3Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan, Bangi, MALAYSIA.

Correspondence
Noor Zarina Abd Wahab
Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, MALAYSIA.
E-mail: zarinawahab@unisza.edu.my

ABSTRACT
Background: Cynometra cauliflora is a species of tree in the family Fabaceae and has been used in folk medicinal preparation. Objectives: In this study, Cynometra cauliflora methanolic leaves extract was tested against clinical isolate herpes simplex virus type-1 (HSV-1). Materials and Methods: The leaves of C. cauliflora plant was extracted using methanol extraction method. Cytotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Plaque reduction assays were carried out to evaluate the antiviral activity of C. cauliflora extract against HSV-1. These include post-treatment, pre-treatment and virucidal assays. Results: The value of cytotoxic concentration, CC50 of C. caulifora extract was 36 mg/mL. High antiviral activity was observed in post-treatment. C. cauliflora extract treatment was found to not interfere directly to infectious particle and confer mild protection when given as prophylaxis. Conclusion: This study provides important novel insights on the phytomedicinal properties of C. cauliflora extracts on HSV-1.

Key words: Herpes simplex virus type 1, Cynometra cauliflora, plaque reduction assay, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); virucidal.

INTRODUCTION
Medicinal plants of the Malaysian forest were reportedly rich in biological activities. Several interesting natural products were isolated from local medicinal plants such as styrylpyrone derivatives isolated from G. umbrosus have shown a potent antiviral activity against HSV-1 and dengue virus type 2 (DENV-2). Other in vitro studies also showed SPD is active against several cancer cell lines namely; HL-60 (leukemia), HepG2 (liver), PANC-1 and Hela cells, geraniin extracted from the rind of Nephelium lappaceum that were reported has been shown to exhibit antiviral properties against several types of viruses, as well as crude methanolic extract of Psidium guajava leaves extract that were reported to have antibacterial activities against foodborne pathogens. This plant extract also was reported to have antiviral activity against DENV-2. Previous studies have shown antioxidant, antiinflammatory, antitumor, antimicrobial and antiidiabetic activity of C. cauliflora. C. cauliflora L. or commonly known as ‘Nam-Nam’ among native Malaysian is a tropical plant under the Fabaceae family. It is also commonly known by local as NamNam or Buah Katak Puru in Malaysia. The fruit which are kidney-shape pod, greenish yellow to brown, with a sandy and wrinkled surface. It can be consumed as fruit salad (ulam). Herpes Simplex Virus type-1 (HSV-1) is a common pathogen which causes cold sores or common cold and orolabial infection. Normal sites of infection are mucosal epithelium, hence keratitis labial herpes, gingivostomatitis, and genital herpes. Infection can disseminate from mucosal epithelium to other tissues with slow healing and more detrimental outcome in immunocompromised individual. This includes in newborn babies, transplant patient or HIV patient who are readily struggling with immature immunity, immune suppressive drugs and prolonged toxicity and prophylaxis, respectively. Generally, HSV-1 infections can be treated successfully with acyclovir. However, drug resistant variants emerged as a result of long-term treatment of immunocompromised patients with acyclovir. This subsequently led to treatment failure. Thus, a new target is required to ensure alternative possible treatments for HSV-1 resistant strains. In order to combat this resistant HSV-1 strain, new antiviral agents with different mode of actions are indeed important. Therefore, the aim of this study was to investigate the potential of crude methanolic extract of C. cauliflora leaves as an antiviral agent against HSV-1 infection.

MATERIALS AND METHODS
Plant material
The fresh leaves parts were collected from the state of Terengganu, Malaysia. The leaves were cleaned with tap water to remove dirt and oven-dried at 60°C. Dried leaves powder of C. cauliflora was extracted with methanol. C. cauliflora leaves (100 g) was macerated with methanol (300 mL) to produce crude methanol extract. The extracts were filtered and solvent was evaporated under reduced pressure using rotary vacuum evaporator.

Cells and virus
Vero cell from American Type Culture Collection (ATCC) CCL-81 was used for both cytotoxicity and antiviral test. Dulbecco’s Modified Eagle's Medium

Cytotoxicity test

Briefly, Vero cells (2.5×10^5 cells/mL) were seeded into 96-well plates and incubated overnight at 37°C. Upon 80% confluence, the cells were treated with several concentrations of extract, ranging from 3.13 mg/mL to 100 mg/mL. After incubation of about 72h, the growth medium was discarded and replaced with 100 μL of MTT solution and incubated for 3h. After that, the MTT solution was discarded, and formazan crystal was dissolved using 100 μL of dimethyl sulphoxide (DMSO) to lyse the cells. Colour development was detected using a microplate reader (TECAN Infinite 200 PRO, Austria) at 540 nm. Optical density (OD) of individual well was quantified using spectrophotometer at 540nm. Cells viability was calculated using formula below:

\[
\text{Cell viability} (\%) = \frac{\text{OD}_{\text{test}} - \text{OD}_{\text{blank}}}{\text{OD}_{\text{cell}} - \text{OD}_{\text{blank}}} \times 100
\]

where \(\text{OD}_{\text{test}}\) = optical absorbance of cells treated with SPD, \(\text{OD}_{\text{blank}}\) = optical absorbance for well filled with DMSO and \(\text{OD}_{\text{cell}}\) = optical absorbance for cells without treatment with SPD. Nonlinear regression was done to obtain the CC50 value (cytotoxic concentration which killed 50% of cells).

Antiviral assay

Antiviral activity was also evaluated by the plaque assay method. Screening for antiviral activity was performed using 3 different treatments. 1) Post-treatment: To evaluate antiviral activity of extract against intracellular replication of DENV-2, cells were inoculated with virus 2 hour before treatment with extract. 2) Pre-treatment: In order to determine the prophylactic anti-HSV-1 activity of extract, virus was inoculated to cells 24 hours after treatment with extract. 3) Virucidal: Direct virucidal effect of the extract was investigated by incubating virus with extract for 1 hour before it was inoculated on the cells. For the antiviral tests, the extract concentration tested was twice lower than the EC50 value in order to reduce the possibility of toxicity towards the cells. The viral concentration used for cell inoculations was fixed at 50 PFU. The effectiveness of extract as an antiviral agent expressed as selectivity index (SI).

\[
\text{Selectivity Index (SI)} = \frac{\text{Cytotoxicity concentration (CC}_{50} \text{)} }{\text{Effective concentration (EC}_{50} \text{)}}
\]

RESULTS

Cytotoxicity evaluation of C. cauliflora extract

MTT assay was conducted to determine the cytotoxicity of C. cauliflora extract towards Vero cells. The cytotoxicity assay result, as presented in Figure 1, shows the percentage of cell viability versus C. cauliflora extract concentration. The estimated CC50 value towards the Vero cells was 36.0 mg/mL.

Anti-HSV-1 activity of C. cauliflora

Plaque reduction assays were done to screen for anti-HSV-1 activity using C. cauliflora extract with different concentrations. Figure 2A, 2B and 2C shows the percentage of plaque reduction in post-treatment, pre-treatment and virucidal assays, respectively. The results from post-treatment assay showed that 100% plaque reduction was achieved at the concentration of 18 mg/mL. In pre-treatment assay, more than 50% plaque reduction was observed at 9 mg/mL. Meanwhile, C. cauliflora extract at any concentrations had no virucidal effect on HSV-1.

Effectiveness of certain compounds or extracts can be evaluated by using selectivity index (SI). In post-treatment assay, C. cauliflora extract exhibited potent antiviral activity against HSV-1 with EC50 = 2.14 mg/mL and with SI value of 16.8 (Table 1). Pre-treatment of Vero cells with C. cauliflora extract exhibited the prophylactic activity of extract against HSV-1 infection with EC50 = 8.5 mg/mL and with SI value of 4.23 (Table 1). C. cauliflora extract when added simultaneously with the virus not showed any anti-adsorption activity against HSV-1 (Table 1).

Result revealed that C. cauliflora extract had greater SI value in post-treatment. Any antimicrobial compound that has SI values higher than 10 (SI>10) ensures the potential to be developed as an agent of antiviral drug. Selectivity index of C. cauliflora extract against HSV-1 was more than 10 indicating potential as antiviral agent.
Wahab, et al.: Antiviral Activity of an Extract from Leaves of the Tropical Plant *Cynometra cauliflora*

Figure 2: Effect of post-treatment (A), pre-treatment (B) and virucidal (C) of *C. cauliflora* extract on HSV-1 plaque reduction.

Table 1: CC$_{50}$, EC$_{50}$ and SI values of all extracts in post-treatment assay, pre-treatment assay and virucidal assay.

<table>
<thead>
<tr>
<th></th>
<th>CC$_{50}$ (mg/mL)</th>
<th>EC$_{50}$ (mg/mL)</th>
<th>SI (CC${50}$/EC${50}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-treatment</td>
<td>36.0</td>
<td>2.14</td>
<td>16.8</td>
</tr>
<tr>
<td>Pre-treatment</td>
<td>36.0</td>
<td>8.5</td>
<td>4.23</td>
</tr>
<tr>
<td>Virucidal</td>
<td>36.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CC$_{50}$: Cytotoxic concentration of SPD; EC$_{50}$: Effective concentration of SPD; SI: Degree of selectivity.
DISCUSSION

Based on phytochemical analyses the findings in previous study, *C. cauliflora* leave extract has been reported to be rich in secondary metabolites such as tannin, flavonoid, saponins, cardiac glycosides and terpenoids.29 Lyu and collaborators23 reported the elucidation of the mechanism of the antitherpetic (HSV-1) activity in vitro via plaque reduction assay of flavonoid. Similarly, Siemiaska24 demonstrated that tannins and related compounds, exhibit antitherpetic activity in vitro. In addition, Perez22 reported that saponins inhibit the replication of HSV-1 and poliovirus type 2 as shown by inhibition of cytopathic effect and reduction of virus production. Thus, the richness of secondary metabolites in *C. cauliflora* plant may contribute to anti-HSV-1 properties. In this study, we investigated whether *C. cauliflora* methanolic extracts could confer protection to cells before or after the initiation of HSV-1 infection. The ability of the extract to act directly against HSV-1 virion particle was observed in virucidal assay. This antiviral analysis was performed on Vero cells as a model of infection in mammalian cells.

Screening for antiviral activity involves post-, pre- and virucidal treatment to determine the best mode for antiviral administration. In this part of the study, *C. cauliflora* extract treatment was found to not interfere directly to infectious particle and confer mild protection when given as prophylaxis. Instead, evidence showed that extract-HSV-1 treatment was found to not interfere directly to infectious particle because no inhibition was observed.

CONCLUSION

As a conclusion, our findings suggest that crude extract prepared from *C. cauliflora* contains antiviral active compounds and could be potential antiviral agent.

ACKNOWLEDGEMENTS

We wish to thank Universiti Sultan Zainal Abidin (UniSZA) for the facilities and laboratory instruments.

CONFLICTS OF INTEREST

None.

REFERENCES

Wahab, et al.: Antiviral Activity of an Extract from Leaves of the Tropical Plant Cynometra cauliflora

ABOUT AUTHORS

Dr. Noor Zarina Abd Wahab is senior lecturer at the Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Malaysia. Her current research interest are antimicrobial mechanism of action and biological activity of plant natural products.

Associate Professor Dr. Nazlina Ibrahim is senior lecturer at the Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia. Her current study is evaluation and determination of antimicrobial activities from plant, endophytes and synthetic chemicals. She also is interested in evaluating the toxicity of antimicrobial agents in cell culture and in animals.
Dr. Norhidayah Binti Badya is senior lecturer at the Faculty of Medicine, Universiti Sultan Zainal Abidin. Her current research interest are biomedical sciences, infectious/communicable diseases, molecular cell biology and epigenetics.

Aziah Azizul is postgraduate student of the Department of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Malaysia under supervision of Dr. Noor Zarina Abd Wahab.

Cite this article: Wahab NZA, Azizul A, Badya N, Ibrahim N. Antiviral Activity of an Extract from Leaves of the Tropical Plant *Cynometra cauliflora*. Pharmacog J. 2021;13(3): 752-7.