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INTRODUCTION
Nature’s extreme environments are untapped immense 
potential resources for discovery and isolation of novel 
microbes that are taxonomically significant. These 
microbes are an essential treasure for novel bioactive 
lead compounds which might be a consequence of 
their evolution and adaptation to metabolic biochem-
istry such as enzymes and antibiotics.1 Hence marine 
microbes offer novel biocatalysis and value added 
molecules.2 Marine microbial diversity enacts limitless 
pool of novel metabolite chemistry that contributed 
an important source to the innovative biotechnology.3 
The search for novel antibiotics from the terrestrial 
microbes have diminished since this resource has been 
extensively explored and precious compounds have 
been already derived from these microbes.4 Hence 
the researchers and scientists switched over to explore 
new environments for the discovery of pharmaceutical 
compounds to combat human pathogens. 

Improved Bioactive Metabolite Production by Saccharopolyspora 
halotolerans VSM-2 using Response Surface Methodology and 
Unstructured Kinetic Modelling

ABSTRACT
Background: This study targets to optimize and analyse the interactive effects of process vari-
ables for improved bioactive metabolite production using RSM and unstructured kinetic model-
ling by S. halotolerans  VSM 2. Materials and Methods: RSM was applied to optimize the interac-
tive effects of five variables, viz., time of incubation, pH, temperature, concentration of maltose 
and meat extract on bioactive metabolite production and its effect against the five responses 
viz., S. flexneri, S. marcescens, P. vulgaris, P. aeruginosa and E. coli. Models of Logistic and  
Luedeking-Piret were used to simulate the cellular increase and bioactive metabolite production.  
Results: RSM optimal conditions for the bioactive metabolite production recorded were  
incubation time (12days), pH (8), and temperature (250C), concentrations of maltose and meat 
extract (1 % w/v) (each). The effect of the bioactive metabolite produced (zone of inhibition)  
against the responses were found to be 17 mm for S. flexneri, 17 mm for S. marcescens,  
16 mm for P. vulgaris, 17 mm for P. aeruginosa and 18 mm for E coli. The data obtained 
from experimental values are in close agreement with the predicted values of RSM. Model  
adequacy was evaluated using ANOVA variance where the quadratic effect of p<0.0001 which 
imply the significance of the model. The unstructured-, mathematical- kinetic models provided 
a better approximation of profiles of S. halotolerans VSM 2 growth, optimized media utilization 
and bioactive metabolite production. Conclusion: Optimization of the independent variables 
for the production of the bioactive metabolite using RSM by S. halotolerans VSM 2 and its 
effect against the five responses were documented. The predicted values are in good agree-
ment with the experimental values. Unstructured models provided a better approximation of 
kinetic profiles for bioactive metabolite production by S. halotolerans VSM 2.
Key words: Saccharopolyspora halotolerans, Response surface methodology, Optimization, 
Bioactive metabolites, Kinetic modelling.
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Actinomycetes are an important group of microbes 
that dwell in diverse ecological extreme environments5  
and are assuring sources for the unconventional 
anti-microbial compounds that are exclusive and 
carry unexplored metabolic pathways even at the 
species variants.6 The production of the bioactive 
compounds by the actinomycetes is influenced by  
the potency of the strain, nutritional and physical  
conditions, since the metabolism of the strain 
influenced by the medium constituents for the  
production of the bioactive compounds. Several 
environmental factors including temperature, pH 
and incubation period greatly influence the metabo-
lite production in addition to carbon and nitrogen 
source.7

Response Surface methodology (RSM) is a compe-
tent statistical method for model development and 
optimization of the complex process variables for  
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the bioactive metabolite production due to its efficiency and experi-
mental interpretation.8 The key features of the RSM application are the  
reduced number of the experiments accompanied with the process  
variables interaction effects.9 Hence RSM has been widely applied to 
design the model for the optimization of bioactive metabolite production  
which accomplishes it, as an expedient and acceptable method to that of 
classical optimization method.10

Mathematical models provide the complete knowledge of dynamic  
behavior that allows us to operate, optimize and control most of the  
fermentation processes. When unstructured models are applied for  
bioactive metabolite production, they would explain the kinetic relation-
ships between substrate, product and biomass. These models obtained 
from stoichiometry and kinetic expressions describe each operation unit  
as reactor. Batch bioprocesses are hard to model, owing to the time-varying  
characteristics of cell systems, which often results in nonlinearities. 
For this purpose, model equations are solved, and the values of output 
variables are obtained as a function of time. Further, the evaluation of 
assumed unstructured model with experimental data for comparison is 
carried out, to find the best model that could describe the whole micro-
bial system. Parameters estimation is an essential step in the model 
verification and subsequent use of a mathematical model. In general,  
unstructured models consider the cell mass to explain the biological  
system and are more effective in elucidating the fermentation profiles of 
microbial process for bio products.11-13

As the statistical methods viz., Full-factorial design cannot investigate 
the second order effects of process parameters and Taguchi design does 
not evaluate the interaction effects of parameters, the present study has  
been conducted with the following objectives: (i) to optimize the  
independent process variables using Central composite design of RSM 
which determines the optimal values and the interactive effects of the 
independent variables for the bioactive metabolite production by Saccha-
ropolyspora halotolerans VSM 2 and its effect against the five responses. 
(ii) to assess the kinetic parameters (after verification of mathematical 
model) in the bioactive metabolite production by Saccharopolyspora 
halotolerans VSM 2.

MATERIALS AND METHODS
Isolation
Marine sediment samples were collected at different depths of the Bay of 
Bengal of north coastal Andhra Pradesh, India. Samples collected were  
transported to the laboratory in sterile bags and air dried at room  
temperature and then subjected to pre-treatment with dry heat at 100°C/
one h14 to increase the actinobacterial population in the sample and to 
restrain the unwanted contaminants like fungi and bacteria. Pre-treated 
sediment sample (1g) was suspended in 100 ml sterile distilled water, 
homogenized by vortexing. Serial dilutions were prepared and 100 µl of 
10-4 dilution was spread, on Bennett’s agar containing 0.1% yeast extract, 
0.1% beef extract, 0.2% casein enzymic hydrolysate, 1% dextrose and 2% 
agar (pH 8) supplemented with nalidixic acid (50 µgml-1) and nystatin  
(50 µgml-1) followed by incubation at 30ºC for two weeks. Morphologically  
distinct strain was selectively segregated and maintained by sub culturing  
on yeast extract malt extract dextrose (YMD) agar medium at 4ºC for 
further study. 

Identification
Metabolites of the promising actinomycete strain VSM-2 showed signifi-
cant antimicrobial activity when compared to other tested isolates. The 
strain was identified as S. halotolerans VSM 2 by polyphasic taxonomy  
and by16S rDNA gene sequence (Gen Bank No: KT901294). Pure  
culture was maintained on Yeast Extract Malt Extract Dextrose (YMD) 
agar medium at 4ºC for further study.

Experimental Design and Statistical analysis
Central composite design (CCD) of RSM has been enforced to evaluate  
the interaction effects among the variables and to design optimized 
conditions of the variables to predict the compelling values against 
the responses.15 Five effective variables from the classical optimization 
approach OFAT (one-factor-at-a-time) were selected. The variables 
selected include, Time of incubation, pH, Temperature, concentration 
of maltose and meat extract for the production of bioactive metabolites 
by S. halotolerans VSM 2 and its effect (antimicrobial activity) against 
the five responses, Shigella flexneri (MTCC 1457), Serratia marcescens 
(MTCC 118), Proteus vulgaris (ATCC 6380), Pseudomonas aeruginosa 
(ATCC 9027) and Escherichia coli (ATCC 35218) (Zone of inhibition  
measured in mm). The experimental design consisted of 50 experimental  
trials and each of the selected variables has been analysed at three levels, 
low, medium, and high coded as (-1, 0 and +1) (Table 1).
The following equation represents the coded process variables

  x = (Xi-X0)/ ΔX (Eq-1)

The interactive effect of the process variables for bioactive metabolite 
production was studied for the three values for each factor (minimum,  
mean and maximum) by full factorial design. The number of experiments  
n for k factors is given as n=3k. The experimental runs have been  
randomized to reduce the unexpected variability of the observed 
responses. Experiments were designed according to CCD using a 25 full 
factorial design for five variables that consists 32 factorial points, 10 axial 
points and 8 replicates. 8 replicates at centre points were used for each 
categorical variable which incorporates a total of 50 experiments (Table S1)  
calculated from Eq- 1.16

A second order polynomial regression model was employed in the present 
study in Eq-2. The application of the polynomial equation is linear and 
quadratic.
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Where Y is the predicted response, β0is intercept coefficient, βi is the 
linear coefficient, βij are the interaction coefficients, βii are the quadratic 
coefficients, Xi and Xjare coded values of the five additive variables.

Statistical Analysis
Design-Expert version 7, was used for the design of experiments, and 
analysis of variance (ANOVA) was applied to analyse the interactive 
effects of the variables (Time of incubation, pH, Temperature, Con-
centration of maltose and meat extract) for the bioactive metabolite  
production by VSM 2 and its effect against the responses (antimicrobial 
activity). The analysis of ANOVA summarizes regression coefficients 
(RC) Eq. (2), sum of squares (SS), Standard error (SE), F-value (F), and  
P-value. The statistical significance of the model is analyzed by the  
probability p-value. The p-value should be <0.05 and <0.01 for 95% and 
99% confidence levels for statistical significance of the effects. Lower the 
value of p, the significance of the corresponding coefficient is more.17 
The fit and quality of the polynomial model was expressed with the value 
of correlation coefficient (R2) and adjusted R2. If the model coefficient 
determination (R2) and adjusted (R2) values are >0.9, suggests that there  
is a high correlation between the experimental and model predicted  
values and indicates that the regression model explains the relation 
between the independent variables and responses.18 3D plots were generated  
by varying two variables with the experimental range with the other variable  
constant at the central point.19 3D response surface analysis determines  
the optimal regions of the independent and structured variables.20  
Additionally, numerical optimization was executed to determine the  
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optimum values of the independent variables. Further, a meaningful way 
of analyzing the kinetic behavior of the cell growth, substrate utilization 
and product formation in the fermentation process is executed through 
estimation of its kinetic parameters.

Unstructured Model Development

The proliferation of marine actinomycete with restricting carbon sub-
strates impacts the metabolite production. A set of mathematical and 
unstructured kinetic models, significantly define the substrate usage and 
growth-related production formation kinetics in a batch system that 
were studied by many researchers.21-22

Models of Logistic and Luedeking-Piret were used to simulate the cellular 
increase and antibacterial metabolite production of S. halotolerans VSM 
2. The statistics acquired from the models had been used to calculate the  
specific cell growth rate (µmax), d-1 and unique production rate of bioac-
tive metabolite, d-1. Under desirable growth conditions with no effects 
of substrate and product inhibition, growth kinetic model of VSM 2(X) 
(as per Malthus’s law), in a batch fermentation is ultimately described as 
Logistic function:23

  
dx
dt
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
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In combination with the equation (Eq-3) leads to the Logistic (L) - type 
model equation that correlates increased growth of cell:
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X represents biomass concentration (g/L) µmax portrays the maximum  
specific cell growth rate, d-1, and Xm depicts the maximum biomass  
concentration (g/L).
Antibacterial metabolite production can be obtained from growth limiting  
substrate (optimized media ingredients) and the substrate utilization 
kinetics may be taken from Modified Leudeking-Piret (MLP) equation:
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In combination with the above equation results Logistic Incorporated 
Modified Leudeking-Piret (LIMLP) equation:

 (Eq-6)

Constant of non-growth associated substrate intake, η, in equation (Eq-6) 
can be calculated from stationary phase data
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Considerable bioactive metabolite production occurs in late-logarithmic 
phase of cell growth and its kinetics follows Leudeking-Piret equation 
24 as:

  dP
dt

dX
dt

X= +α β  (Eq-8)

Logistic Incorporated Leudeking-Piret (LILP) equation derived from 
integration of above equation results:
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Non-growth associated product formation constant, β, can be deter-
mined from stationary phase data (where):

  
β =









dP
dt

X
stationary phase

max

 (Eq-10)

Experimental statistics acquired from batch shake-flask fermentations 
was used to simulate the use of the equations (Eq-4), (Eq-6) and (Eq-9).

RESULTS AND DISCUSSION
A randomized run of 50 experiments were executed by applying Central  
composite design of RSM. The influence of the model design matrix 
on the five variables to produce bioactive metabolite by VSM 2 and its 
effect on the five responses (zone of inhibition in mm) is represented in 
supplementary Table 1. The advised sequential model analyses the sum 
of squares and lack of fit tests for the best outcome quadratic model, for 
all the five responses. Experimental values of the five responses acquired 
were in close agreement with the predicted values that indicate the model 
is gratifying according to the experimental design (Table S1).

CCD analysis of bioactive metabolite production
CCD of RSM optimized conditions for the bioactive metabolite produc-
tion by VSM 2 which executes the highest antibacterial activity were 
found to be 12 days for time of incubation, pH 8, temperature 25 °C, 
concentration of maltose 1% and meat extract was 1%. The maximum 
effect of the bioactive metabolite against the five responses (measured as 
zone of inhibition in mm) were recorded as 17 mm for S. flexneri, 17 mm  
for S. marcescens, 16 mm for P. vulgaris, 17 mm for P. aeruginosa and  
18 mm for E. coli.
Regression analysis of the experimental data was performed, and the 
model was found to be significant with the p- value (<0.0001) for all the 
five responses. The lower the p value the more significant is the model. 
The experimental data of each response followed the second-order poly-
nomial equation.

Table 1: Experimental range of factors studied using CCD in terms of 
coded and actual factors.

Symbols Independent Variables

Actual levels of coded 
factors

Low
(-1)

Medium
(0)

High
(+1)

A Time of Incubation, days 11 12 13

B pH 7.00 8.00 9.00

C Temperature, 0C 20 25 30

D Concentration of Maltose, % w/v 0.50 1.00 1.50

E Concentration of Meat Extract, 
% w/v

0.50 1.00 1.50
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Interaction effects of the variables
Three-dimensional (3D) surface plots of the five responses illustrated 
gives the interactive effects of the process variables for maximizing the 
production of bioactive metabolites. Figure 1-5, represents the 3D plots 
of the zone of inhibition versus two varying parameters with a fixed value 
of the third operating parameters. Analysis of the 3D plots revealed that 
all the five parameters showed a positive effect. Further increase in the  
concentration and values of the variables showed decrease in the produc-
tion of bioactive compounds by S. halotolerans VSM 2 and decrease in  
the diameter of the zone of inhibition against the responses. The highest  
production of the bioactive metabolite by S. halotolerans VSM 2 was 
obtained when the time of incubation was 12 days, pH 8, Temperature 
25ºC concentration of Maltose and Meat Extract at 1%.

Unstructured kinetic modelling 
In this study, for fitting of experimental data with unstructured logistic 
models, nonlinear regression using least-square method was applied  
with the help of Microsoft Excel Solver 2010. The profiles of S. halotolerans  
VSM 2 growth limiting substrate utilization results obtained from shake  
flask experiments and model kinetics were compared in Figure 6(f). 
Figure 6 (a) - (e) shows the comparison of experimental versus model 
predicted zones of inhibition of produced bioactive metabolite on media, 
inoculated with S. flexneri, S. marcescens, P. vulgaris, P. aeruginosa and 
E. coli strains over the time. From all the profiles, it was observed that 
model predicted, and experimental obtained values show very good fit. 
Biokinetic parameters used in the mathematical model equations were  

Table 2: Sequential model fitting for all the responses (in terms of inhibi-
tion zone produced by bioactive metabolite).

Model  
parameter

S. flex-
neri

S. marces-
cens 

P. vul-
garis

P. aerugi-
nosa

E. coli

Sequential model sum of squares- Quadratic vs 2FI (suggested)

Sum of squares 75.50 116.4 61.64 75.6 176.78

Degrees of 
freedom 5 5 5 5 5

Mean square 15.10 23.28 12.33 15.12 35.36

F-value 122.29 263.89 190.0 168.98 308.83

p-value 
(Prob > F)

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Model summary statistics- Quadratic (suggested)

Standard 
Deviation 0.35 0.30 0.25 0.30 0.34

R2 0.9584 0.9799 0.9727 0.9701 0.9821

Adjusted R2 0.9296 0.9661 0.9538 0.9494 0.9697

Predicted R2 0.9447 0.9350 0.9083 0.8878 0.9349

Adequate
Precession

16.641 23.200 19.282 20.105 23.570

CV % 2.37 2.07 1.81 1.97 2.27

Table 3: ANOVA variance to test the adequacy of the model.

Statistics
Response

Shigella 
flexneri

Serratia 
marcescens

Proteus 
vulgaris

Pseudomonas 
aeruginosa

Escherichia 
coli

R2 0.9584 0.9799 0.9727 0.9701 0.9821

Adj-R2 0.9296 0.9661 0.9538 0.9494 0.9697

Pred- R2 0.8599 0.9350 0.9083 0.8878 0.9949

Adequate
Precession

16.641 23.200 19.282 20.105 23.570

CV % 2.37 2.07 1.81 1.97 2.27

Checking the Model adequacy 
ANOVA variance has been applied to analyze the adequacy of the model 
at a confidence level of 99% (Table 3). The coefficient of determination (R2)  
and the adjusted R2 of all the five responses was found to be >0.9 (Table 3).  
The Coefficient variation (CV) is the standard deviation expression as 
percentage (%) of Mean and need to be less than 10%. CV of the five  
responses is illustrated in Table 3. Adequate precision measures the signal 
to noise ratio and must be greater than 4 for the model to be significant. 
The outcome of adequate precision is given in Table 3. The CV and the 
adequate precision of the model executed were found to be significant.
The Fisher’s statistical test was employed to determine the importance 
of each factor where the significance degree was ranked based on the 
F-ratio value (Table 2). The p- value of the model for the five responses 
were statistically significant with the probability F-Value that is <0.0001. 
ANOVA variance analysis reveals most of the significant factors, incubation  
time (days), pH, temperature, concentration of maltose and concentra-
tion of meat extract influence the maximum production of the bioactive 
metabolite by VSM 2 that effect the five responses (inhibition of growth 
of the pathogenic microorganisms).

Table 4: Estimated kinetic parameters using L, LILP, LIMLP model  
equations.

Kinetic 
Parameters

S. 
flexneri

S. 
marcescens

P. vulgaris
P. 

aeruginosa
E. coli

Logistic (L) Model Parameters

µmax (d-1) 0.72

R2 0.99

X0 (g/L) 0.005

Xm (g/L) 0.191

Logistics incorporated Modified Luedeking-Piret (LIMLP) Model 
parameters

γ (g.S/g.X) 17.75

R2 0.95

η (g.S/(g.X.d)) 0.5235

Logistics incorporated Luedeking-Piret (LILP) Model parameters

α (mm/g.X) 78.37 73.17 68.97 70.22 78.50

R2 0.986 0.964 0.989 0.981 0.983

β (mm/(g.X.d)) 8.658

Table 5: Comparison of zones of inhibition (mm) from shake-flask  
experiments and from model.

Maximum 
Zone of Inhibition (mm)
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 fl

ex
ne
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 m
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ce

sc
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vu

lg
ar
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in
os
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Experimental 27 26 25 25 27

Model fitted 25.97 25.01 24.23 24.46 25.99
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Figure 1: 3D Response surface plots showing interactive effects of 
selective variables on zone of inhibition (mm) of the bioactive  
compound production by S. halotolerans VSM-2 against S. flexneri.

Figure 3: 3D Response surface plots showing interactive effects of 
selective variables on zone of inhibition (mm) of the bioactive  
compound production by S. halotolerans VSM-2 against P. vulgaris.

Figure 4: 3D Response surface plots showing interactive effects of 
selective variables on zone of inhibition (mm) of the bioactive  
compound production by S. halotolerans VSM-2 against P. aeruginosa.

Figure 2: 3D Response surface plots showing interactive effects  
of selective variables on zone of inhibition (mm) of the bioactive  
compound production by S. halotolerans VSM-2 against S. marcescens.
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also estimated and are tabulated in Table 4. Table 4 also shows deter-
mination coefficient (R2) values obtained by fitting Logistic (L), Logistic  
Incorporated Leudeking-Piret (LILP), and Logistic Incorporated  
Modified Leudeking-Piret (LIMLP) models to the experimental data 
were found to be high, thus revealing good precision of the models. 
From the data of shake-flask used in this study, µmax, X0 and Xmax were 
calculated from S. halotolerans VSM 2 growth kinetic profile using  
Logistic (L) model. Values of growth and non-growth associated product  
parameters, α and β, were estimated using Logistic Incorporated 
Leudeking-Piret (LILP) model and a higher α values than β confirmed 
that bioactive metabolite production by S. halotolerans VSM 2 is more  
growth associated than non-growth associated in shake flask. The  
simulated parameters, γ and η, of Logistic Incorporated Modified 
Leudeking-Piret (LIMLP) model are also in good agreement with the  
experimental values, implies that this model is more appropriate to  
represent limiting substrate utilization kinetics in bioactive metabolite 
production by S. halotolerans VSM 2. Further, zones of inhibition from 
agar diffusion tests are almost like model predicted values (Table 5). 
Response surface methodology is a statistical and mathematical technique 
applied for optimizing process parameters and analyzes the interactive 
effects among the process variables and its effect against the responses.25 
The CCD of RSM optimized conditions for the production of bioactive  
compounds by S. halotolerans VSM 2 were found to be time of incubation  
as 12 days, pH as 8, temperature as 25°C, concentration of maltose as  
1% and meat extract as 1%. Zone of inhibition of the growth of the  
5 responses by the bioactive metabolite produced by VSM 2 was recorded 
as 17 mm for S. flexneri, 17 mm for S. marcescens, 16 mm for P.vulgaris, 
17 mm for P.aeruginosa and 18 mm for E. coli.
Regression analysis was employed to fit the empirical model with the 
generated response variable data.26 The data obtained from the CCD of 
RSM was fitted into second order polynomial equation.27 Considering 
only the significant independent factors (Table 2), the obtained model 
indicates the relationship between the predicted results are in agreement 
with the experimental results obtained. 
ANOVA based computation of the predicted and experimental responses  
determine the polynomial expression of the responses statistically.  
Adequacy of the model check is essential to check whether the model 
is suited and to verify that it delivers an accepted approximation to the 
actual system.28 The effect of bioactive metabolite against five responses 
S. flexneri, S. marcescens, P. vulgaris, P.aeruginosa and E. coli (zone of 
inhibition in mm) produced by the optimization of the independent 
variables have a significant quadratic effect (p<0.0001). The p value is 
taken in to account, to review the significance of each of the coefficients 
and the interactive strength of each parameter. If the p value is found 
to be less than <0.05, it suggests that the corresponding variables are 
more significant.29 The validity of the model was also confirmed by the 
insignificant Lack fit test values obtained for the five responses (p> 0.05) 
(Table 2). 
The coefficient of determination (R2) shows the proportion of the total 
variability of the model which suggests the good fit of the model. R2 
should be close to the value 1 or at least should have a minimum value 
of not less than 0.80.30 The coefficient of determination (R2) of the five  
responses was found to be above 0.9 for all the five responses (Table 3).  
Problem with the fit of the model, which always increases with the 
increase in the added factors even though the factors are not significant. 
Hence the adjusted R2 is used to evaluate the model adequacy since it is 
adjusted for the number of terms in the model.31 R2 is adjusted for the 
size of the model in a way it decreases the insignificant factors added 
to the model.32 The value higher than 0.9 indicates that the regression 
model explained the procedure well. The coefficient of variation (CV) is 
the standard deviation expressed as a percentage of the mean and need 

Figure 5: 3D Response surface plots showing interactive effects of 
selective variables on zone of inhibition (mm) of the bioactive  
compound production by S. halotolerans VSM-2 against E. coli.

Figure 6: Comparison of experimental and model predicted kinetics  
(A-E): for zone of inhibition (mm); (F): for biomass growth (g/L),  
substrate utilization (g/L).
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to be less than 10%.28 Adequate precision measures signal to noise ratio, 
greater than 4 is considered as an adequate signal for the model.33 The 
signal to noise ratio of the developed model of all the five responses is 
presented in Table 3. In addition, the coefficient of variation (CV<10%) 
found to be precise and reliable for the experiments. Three-dimensional 
(3D) surface plots of the five responses illustrated gives the interactive 
effects of the process variables. Evaluation of the 3D plots revealed that 
all the five parameters showed a positive impact.34

The profiles of S. halotolerans VSM 2 growth limiting substrate utilization  
results acquired from shake flask experiments and model kinetics of 
experimental versus model predicted zones of inhibition of produced 
bioactive metabolite on media, inoculated with S. flexneri, S. marcescens, 
P. vulgaris, P. aeruginosa and E. coli strains over the time. From all the 
profiles, it become determined that model predicted, and experimental 
obtained values exhibited very good fit. Values of growth and non-growth 
associated product parameters, α and β, were estimated using Logistic 
Incorporated Leudeking-Piret (LILP) model and a better α values than 
β showed that bioactive metabolite production by S. halotolerans VSM 
2 is more growth associated than non-growth associated in shake flask. 
The simulated parameters, γ and η, of LIMLP model are also in accurate 
settlement with the experimental values, means that this model is more 
suitable to symbolize restricting substrate utilization kinetics in bioactive 
metabolite production by S. halotolerans VSM 2. 
Further, the unstructured models provided a better approximation  
of kinetic profiles of bioactive metabolite production by S. halotolerans VSM  
2 in submerged shake flask fermentations. To the best of our knowledge, 
this is the first report on the kinetic modelling for bioactive metabolite 
production (in terms of zones of inhibition studies) by S. halotolerans 
VSM 2. 

CONCLUSION
CCD of the RSM showed the effect against the five responses by the bioactive  
metabolite produced by S. halotolerans VSM 2. The predicted values of 
the impact of bioactive metabolite produced against the five responses 
had been well consistent with experimental values. High values of the  
adjusted and predicted R2 and adequate precession along with low  
values of the coefficient of variation conclude that the models for 
responses suit the experimental data adequately. Process parameters 
optimized was time of incubation 12 days at pH 8, temperature 25°C and  
1% concentrations of maltose and meat extract. Further, the unstructured  
models provided a better approximation of kinetic profiles of bioactive 
metabolite production by S. halotolerans VSM 2 in submerged shake 
flask fermentations. To the best of our knowledge, this is the first report 
on statistical optimization and kinetic modelling for bioactive metabolite 
production (in terms of zones of inhibition studies) by S. halotolerans 
VSM 2. 
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GRAPHICAL ABSTRACT SUMMARY
• Research designed different process variables affecting the production of bio-

active metabolites by Saccharopolyspora halotolerans VSM-2 and its effect 
against the 5 responses was executed in the laboratory. As a result, the 
application of RSM was handy and viable to study the effect of the important 
parameters on the production of bioactive metabolites by Saccharopolyspora 
halotolerans VSM-2 and its effect against the 5 responses. In addition the 
mathematical modelling of the process parameters have been executed 
to also study the process parametes. The accomplishment of the process 
optimization was feasible with the application of RSM and factorial design. 
The study clearly demark that RSM is most reliable design to optimize the 
operating conditions to escalate the production of bioactive metabolite. Full 
factorial central composite design (50 assays) was successfully operated 
for the experimental design and the result analysis. The predicted values of 
RSM are in agreement with the experimental values. Process para meters 
optimized was time of incubation 12 days at pH 8, temperature 25 °C and 
1% concentrations of maltose and meat extract for the highest production 
of the bioactive metabolite. Further, the unstructured models provided a bet-
ter approximation of kinetic profiles of bioactive metabolite production by S. 
halotolerans VSM 2 in submerged shake flask fermentations.
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