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INTRODUCTION
Clostridium perfringens is an endospore-forming 
Gram-positive, obligate anaerobic bacterium that is 
found in a variety of habitats, including soils, sewage 
or as a naturally occurring inhabitant of the intestinal  
microflora of humans.1 It is classed as an opportunistic  
pathogen and is an etiological agent of clostridial  
gastroenteritis as well as several other diseases including  
myonecrosis.2 The species C. perfringens is divided 
into five type strains (A-E), each capable of producing  
exotoxins that are linked to different illnesses of varying  
severity. These can range from mild food-poisoning to the  
potentially fatal clostridial myonecrosis (gas gangrene).3 

Clostridial myonecrosis is a rapidly progressive infec-
tion of the soft tissue. The disease is characterised by 
the necrosis of local muscle and surrounding tissue 
and can lead to shock and ultimately death, even when 
promptly treated.1 Although several Clostridium spp. 
can cause gas gangrene, C. perfringens is the primary  
bacterium responsible for the disease (along with  
C. bifermentans, C. fallax, C. histolyticum, C. novyi,  
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C. septicum and C. tertium), accounting for up to 
80% of all recorded cases.4 The primary methods 
of treatment are through prompt antibiotic therapy 
and surgery, however combining these with hyper-
baric oxygen can slow the spread of gas gangrene in  
patients. The strictly anaerobic nature of C. perfringens  
means that when exposed to oxygen, cellular  
replication and exotoxin production can be inhibited.  
However, this method of treatment is bacteriostatic 
and thus must be combined with antibiotic chemo-
therapy.5 Traditional antibiotic therapies offer an 
effective means of treatment; however, the probing 
of natural compounds offers an innovative means of 
treatment and lowers the inherent risk of antibiotic 
resistance of C. perfringens.
Tasmannia lanceolata (Poir.) A.C.Sm (commonly 
referred to as Tasmanian pepper or mountain pep-
per berry) is a shrub endemic to the woodlands 
and cool temperate rainforests of Tasmania and the 
south-eastern region of the Australian mainland.6 It 
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Antibacterial screening

Clinical Clostridium perfringens screening

A clinical strain of Clostridium perfringens was supplied by Ms. Jane 
Gifkins (Griffith University) and was originally isolated and verified by 
John Bates (Queensland Department of Health). Cultures were grown  
and maintained using a thioglycolate liquid media (Oxoid Ltd., Australia).  
All growth studies were performed using nutrient agar (Oxoid Ltd., 
Australia) under induced anaerobic conditions using anaerobic jars and 
AnaeroGen™ 3.5L atmospheric generation systems (Thermo Scientific) 
as previously described.[13] Incubation was at 30 oC and the stock culture 
was subcultured and maintained in thioglycolate liquid media at 4 oC.

Evaluation of antimicrobial activity
Antimicrobial activity of all plant extracts was determined using a 
modified disc diffusion assay.14, 15 Briefly, 100 µL of the test bacteria were 
grown in 10 mL of fresh nutrient broth media until they reached a count 
of ~108 cells/mL. A volume of 100 µL of bacterial suspension was spread  
onto nutrient agar plates and extracts were tested for antibacterial activity  
using 5 mm sterilised filter paper discs. Discs were infused with 10 µL 
of the test sample, allowed to dry and placed onto inoculated plates. The 
plates were allowed to stand at 4 °C for 2 h before incubation at 30 °C for  
24 h. The diameters of the inhibition zones were measured in millimetres.  
All measurements were to the closest whole millimetre. Each assay was 
performed in at least triplicate. Mean values (± SEM) are reported in 
this study. Standard discs of penicillin (2 µg) and ampicillin (10 µg) were 
obtained from Oxoid Ltd., Australia and used as positive controls for 
antibacterial activity. Filter discs infused with 10 µL of distilled water 
were used as a negative control.

Minimum inhibitory concentration (MIC) determination
The minimum inhibitory concentrations (MIC) of the extracts was 
determined as previously described.16, 17 Briefly, the plant extracts were 
diluted in deionised water and tested across a range of concentrations. 
Discs were infused with 10 µL of the extract dilutions, allowed to dry 
and placed onto inoculated plates. The assay was performed as outlined 
above and graphs of the zone of inhibition versus concentration were 
plotted. Linear regression was used to calculate the MIC values.

Toxicity screening
Reference toxin for toxicity screening
Potassium dichromate (K2Cr2O7) (AR grade, Chem-Supply, Australia) 
was prepared as a 4 mg/mL solution in distilled water and serially diluted 
in artificial seawater for use in the Artemia franciscana nauplii bioassay. 

Artemia franciscana nauplii toxicity screening
Toxicity was tested using a modified Artemia franciscana nauplii lethality 
assay.18, 19 Briefly, 400 µL of seawater containing approximately 43 (mean 
43.2, n = 155, SD 14.5) A. franciscana nauplii were added to wells of a 
48 well plate and immediately used for bioassay. A volume of 400 µL of 
diluted plant extracts or the reference toxin were transferred to the wells 
and incubated at 25 ± 1 °C under artificial light (1000 Lux).  A negative  
control (400 µL seawater) was run in triplicate for each plate. All treatments  
were performed in at least triplicate.  The wells were checked at regular 
intervals and the number of dead counted.  The nauplii were considered 
dead if no movement of the appendages was observed within 10 seconds.  
After 24 h all nauplii were sacrificed and counted to determine the total 
% mortality per well.  The LC50 with 95% confidence limits was calculated 
using probit analysis. 

is a medium to large shrub that varies between 2-5 m in height. Indi-
vidual plants are unisexual, having either male or female flowers. The 
stems, branches and twigs are red in colour. The aromatic leaves are 
lanceolate to narrowly elliptical in shape (4-12 cm long, 0.7-2 cm wide) 
with a distinctly pale under surface. Small creamy-white unisexual flow-
ers appear during the summer months. These develop into small fleshy 
black 2 lobed berries (5-8 mm wide) during autumn. 
The berries, leaves and bark of this species have historical uses as a food 
and as a medicinal plant.6, 7 When the berry is air dried, it forms a small, 
hard peppercorn which is suitable for milling or crushing. The berry has  
a pleasant spicy flavour and sharp aroma. T. lanceolata was used as  
flavouring agent by Australian Aborigines and more recently by European  
settlers. Historically, the leaves have been used as an herb and the berries 
have been used as a spice. Australian Aborigines also used T. lanceolata 
as a therapeutic agent to treat stomach disorders and as an emetic, as  
well as general usage as a tonic.7 T. lanceolata was also used traditionally  
for the treatment and cure of skin disorders, venereal diseases, colic, 
stomach aches and as a quinine substitute.7 Later, European colonists 
also recognized the therapeutic potential of T. lanceolata and the bark 
was used as a common substitute for other herbal remedies (including 
those derived from the related South American Winteraceae species, 
Drimys wintera (winter bark)7 to treat scurvy due to its high anti-anti-
oxidant content.7, 8

Despite its ethnobotanical usage, there have been limited rigorous scientific  
studies into the therapeutic properties of T. lanceolata. Recent studies 
have demonstrated the high antioxidant content of T. lanceolata fruit 
and leaves.8 It has been postulated that this high anti-oxidant content 
may provide therapeutic effects for this plant.7 Indeed, studies within our  
laboratory have reported potent inhibition of bacterial growth by  
T. lanceolata berries, leaves and peppercorns against panels of pathogenic  
and food spoilage bacteria.9 T. lanceolata extracts can also inhibit the 
growth of a bacterial trigger of rheumatoid arthritis (P. mirabilis).10

However, despite the documented ability of T. lanceolata to inhibit the 
growth of many bacterial species, to our knowledge there have been no 
similar studies against Clostridium perfringens.  The current study was 
undertaken to test T. lanceolata berry and leaf extracts for the ability to 
inhibit the growth of this pathogen. 

MATERIALS AND METHODS
T. lanceolata samples and extraction
Dried Tasmannia lanceolata (Poir.) A.C.Sm berry (without seed) and  
leaf materials were obtained from Go Wild Harvest, Australia. The  
material was thoroughly dried using a Sunbeam food dehydrator and 
stored at -30oC until use. The dried plant materials were thawed and 
freshly ground to a coarse powder prior to extraction. Individual 1 g 
quantities were extracted by weighing each powdered plant part into  
each of 5 tubes and adding 50 mL of methanol, water, ethyl acetate,  
chloroform or hexane respectively. All solvents were obtained from Ajax, 
Australia and were AR grade. The berry and leaf material was extracted 
in each solvent for 24 h at 4oC with gentle shaking. The extracts were 
filtered through filter paper (Whatman No. 54) under vacuum followed 
by drying by rotary evaporation in an Eppendorf concentrator 5301. The 
resultant dry extracts were weighed and redissolved in 10 mL deionised 
water (containing 1% DMSO). 

Qualitative phytochemical studies
Phytochemical analysis of the extracts for the presence of alkaloids, 
anthraquinones, cardiac glycosides, flavonoids, phenolic compounds,  
phytosterols, saponins tannins and triterpenoids were conducted by  
previously described assays.11, 12
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Non-targeted GC-MS head space analysis
Separation and quantification of phytochemical components were per-
formed using a Shimadzu GC-2010 plus (USA) linked to a Shimadzu MS 
TQ8040 (USA) mass selective detector system as previously described.20 
Briefly, the system was equipped with a Shimadzu auto-sampler AOC-
5000 plus (USA) fitted with a solid phase micro-extraction fibre (SPME)  
handling system utilising a Supelco (USA) divinyl benzene/carbowax/
polydimethylsiloxane (DVB/CAR/PDMS). Chromatographic separation  
was accomplished using a 5% phenyl, 95% dimethylpolysiloxane (30 m x  
0.25 mm id x 0.25 um) capillary column (Restek USA). Helium (99.999%) 
was employed as a carrier gas at a flow rate of 0.79 mL/min. The injector  
temperature was set at 230°C. Sampling utilised a SPME cycle which 
consisted of an agitation phase at 500 rpm for a period of 5 sec. The 
fibre was exposed to the sample for 10 min to allow for absorption and  
then desorbed in the injection port for 1 min at 250 °C. The initial  
column temperature was held at 30°C for 2 min, increased to 140 °C for 
5 min, then increased to 270 °C over a period of 3 mins and held at that 
temperature for the duration of the analysis. The GC-MS interface was 
maintained at 200 °C with no signal acquired for a min after injection 
in split-less mode. The mass spectrometer was operated in the electron 
ionisation mode at 70 eV. The analytes were then recorded in total ion 
count (TIC) mode. The TIC was acquired after a min and for duration of 
45 mins utilising a mass range of 45 - 450 m/z.

Statistical analysis
Data is expressed as the mean ± SEM of at least three independent  
experiments.

RESULTS
Extraction of 1 g of the T. lanceolata plant materials with various  
solvents yielded dried plant extracts ranging from 17 mg (T. lanceolata  
leaf ethyl acetate extract) to 171 mg (methanolic T. lanceolata fruit 
extract) (Table 1). Aqueous and methanolic extracts generally gave higher 
yields of dried extracted material compared to ethyl acetate extracts. The 
dried extracts were resuspended in 10 mL of deionised water (containing 
1 % DMSO) resulting in the extract concentrations shown in Table 1.
Qualitative phytochemical studies showed little difference between the 
aqueous and methanolic extracts, however there were notable differences  
between these extracts and the ethyl acetate extracts. High levels of  
phenolics (both water soluble and insoluble) were extracted in the 
aqueous and methanolic samples. There were substantially lower levels  
detected in the corresponding ethyl acetate extracts. Similarly, there was 
a lower level of flavonoids detected in the ethyl acetate extracts than 
the corresponding aqueous and methanolic extracts. Triterpenes were 
detected in both methanolic and ethyl acetate extracts although they 
were absent in the aqueous extracts.
To measure the inhibitory activity of the crude plant extracts against 
C. perfringens, 10 µL aliquots of each extract were screened using a  
disc diffusion assay. The bacterial growth was inhibited by all of the  
6 extracts tested (Figure 1). The methanolic berry extract was the most 
potent inhibitor of growth, with inhibition zones of 16.3 ± 0.3 mm. This 
compares favourably with the penicillin and ampicillin controls, which 
had inhibitory zones of 12.3 ± 0.3 mm and 13.0 ± 1.0 mm respectively. 
The aqueous and methanolic extracts showed greater zones of inhibition 
than the ethyl acetate extracts, with inhibitory zones ≥ 11 mm.
The antimicrobial efficacy was further quantified by determining the MIC 
values (Table 2). All the extracts were determined to be potent inhibitors 

Table 1: The mass of dried extracted material, the concentration after resuspension in deionised water and qualitative phytochemical screen-
ings of the T. lanceolata extracts.
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BW 111 11.1 +++ +++ +++ – – – – – – +++ – – –

BM 171 17.1 +++ +++ +++ – ++ + – – – +++ – – –

BE 56.7 5.7 + + ++ – + ++ – – – ++ – – –

LW 134 13.4 +++ +++ +++ – ++ – – – – +++ – – –

LM 144 14.4 +++ +++ +++ – +++ + – – – +++ – – –

LE 17 1.7 + + ++ – – + – – – ++ – – –

+++ indicates a large response; ++ indicates a moderate response; + indicates a minor response; - indicates no response in the assay. BW = aqueous T. lanceolata  
berry extract; BM = methanolic T. lanceolata berry extract; BE = ethyl acetate T. lanceolata berry extract; LW = aqueous T. lanceolata leaf extract; LM = metha-
nolic T. lanceolata leaf extract; LE = ethyl acetate T. lanceolata leaf extract.
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Figure 1: Growth inhibitory activity of T. lanceolata extracts against the 
C. perfringens clinical isolate measured as zones of inhibition (mm). BW 
= aqueous T. lanceolata berry extract; BM = methanolic T. lanceolata 
berry extract; BE = ethyl acetate T. lanceolata berry extract; LW = aqueous  
T. lanceolata leaf extract; LM = methanolic T. lanceolata leaf extract;  
LE = ethyl acetate T. lanceolata leaf extract; PC = penicillin (2 µg);  
AMP = ampicillin (10 µg). Results are expressed as mean zones of 
inhibition ± SEM.

Figure 2: The lethality of the T. lanceolata extracts (2000 µg/mL) and  
the potassium dichromate control (1000 µg/mL) towards Artemia  
franciscana nauplii after 24 h exposure. BW = aqueous T. lanceolata 
berry extract; BM = methanolic T. lanceolata berry extract; BE = ethyl  
acetate T. lanceolata berry extract; LW = aqueous T. lanceolata leaf extract;  
LM = methanolic T. lanceolata leaf extract; LE = ethyl acetate T. lanceolata  
leaf extract; PC = potassium dichromate control; SW = artificial seawater  
control. Results are expressed as mean % mortality ± SEM.

Figure 3: Head space gas chromatograms of 0.5 µL injections of  
T. lanceolata berry (a) aqueous, (b) methanolic and (c) ethyl acetate 
extracts. The extracts were dried and resuspended in methanol.  
Chromatography conditions were as described in the methods section.

Table 2: Minimum inhibitory concentration (µg/mL) of the plant extracts 
and LC50 values (µg/mL) in the Artemia nauplii bioassay.

Extract MIC  LC50

BW 654 2.376

BM 65 3.573

BE 329 3.132

LW 839 2.665

LM 1.255 3.096

LE 625 1.766

PC ND 186

SW ND -

Numbers indicate the mean MIC and LC50 values of triplicate determinations. 
- indicates no inhibition. BW = aqueous T. lanceolata berry extract; BM = metha-
nolic T. lanceolata berry extract; BE = ethyl acetate T. lanceolata berry extract; 
LW= aqueous T. lanceolata leaf extract; LM = methanolic T. lanceolata leaf extract;  
LE = ethyl acetate T. lanceolata leaf extract; PC = potassium dichromate control; 
SW = artificial seawater negative control; ND = the indicated test was not performed.

of C. perfringens growth, with MIC <1000 µg/mL for all extracts except  
the aqueous leaf extract. Even that extract had a relatively low MIC  
(1255 µg/mL), indicating antibacterial efficacy. The T. lanceolata berry 
extracts were more potent inhibitors than were the corresponding leaf 
extracts. Indeed, a MIC of 65 µg/mL was determined for the methanolic 
T. lanceolata berry extract. This is particularly noteworthy as it equates to  
a mass of less than 0.7 µg infused into the disc (compared with 2 and 10 µg  
for the penicillin and ampicillin controls respectively). 
All extracts were initially screened at 2000 µg/mL in the assay (Figure 2).  
For comparison, the reference toxin potassium dichromate (1000 µg/mL)  
was also tested in the bioassay. The potassium dichromate reference 
toxin was rapid in its onset, promoting nauplii death within the first 3 h 
of exposure with 100 % mortality evident following 4-5 h (unpublished  
results). Similarly, all the T. lanceolata extracts displayed significant  
mortality rates following 24 h exposure (>50%). 
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Table 3: Qualitative GC-MS headspace analysis of the T. lanceolata berry extracts, elucidation of empirical formulas and putative identification of 
each compound.

Molecular Mass Molecular Formula R.Time Name M W E

110 C6 H6 O2 10.19 Acetylfuran +

151 C8 H9 NO2 10.375 Methyl N-hydroxybenzenecarboximidoate +

128 C8 H16 O 10.55  2,4,4-trimethyl-cyclopentanol +

130 C7 H14 O2 10.765 Methyl caproate +

130 C8 H18 O 10.892 4-Methyl-4-heptanol +

170 C12 H26 10.935 3,8-Dimethyldecane + +

128 C8 H16 O 11.18 4-Methyl-2-heptanone + + +

126 C9 H18   11.721 1,1,3,4-Tetramethylcyclopentane + + +

156 C10 H20 O 11.805 2,2,5,5-Tetramethyl-3-hexanone +

110 C6 H6 O2 11.87 2-Formyl-5-methylfuran +

120 C9 H12 11.993 p-Ethylmethylbenzene +

120 C9 H12 12.12 m-Ethyltoluene

156 C10 H20 O 12.299 Decanal + +

154 C10 H18 O 12.28 2,2,6-Trimethyl-6-vinyltetrahydropyran +

114 C8 H18 12.502 2,4-Dimethylhexane + +

186 C9 H14 O4 12.535 alpha.-D-Xylo-Hex-5-enofuranose, 5,6-dideoxy-1,2-O-(1-methylethylidene)- +

284 C16 H28 O4 12.626 Succinic acid, 2-methylpent-3-yl trans-he + +

126 C8 H14 O 12.72 6-Methyl-5-hepten-2-one + + +

146 C7 H14 O3 12.773 Methyl 2-hydroxy-4-methylpentanoate +

170 C12 H26 13.229 Dodecane + + +

128 C8 H16 O 13.235 Octanal

142 C10 H22 13.53 3,3,5-Trimethylheptane + +

170 C12 H26 13.696 3,4,5,6-Tetramethyloctane + +

120 C9 H12 13.868 Cumene + + +

140 C9 H16 O 13.94 Ethanone, 1-(2,2-dimethylcyclopentyl)- +

142 C10 H22 13.966 3,3-Dimethyloctane + +

154 C10 H18 O 14.135 Cineole + +

140 C9 H16 O 14.21 1,1,3-Trimethyl-2-cyclohexanone + +

136 C10 H16 14.404 alpha.-Pinene +

136 C10 H16 14.735 .beta.-Ocimene +

244 C13 H24 O4 14.847 Oxalic acid, isohexyl neopentyl ester + +

278 C14 H30 O3 S 14.995 Sulfurous acid, nonyl pentyl ester + +

114 C8 H18 15.081 3,3-Dimethylhexane + +

120 C8 H8 O 15.15 Bicyclo[4.2.0]octa-1,3,5-trien-7-ol +

242 C13 H22 O4 15.463 Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate + +

212 C14 H12 O2 15.615 m-Toluic acid, phenyl ester + +

134 C10 H14 15.622 m-Cymene +

200 C13 H28 O 15.744 11-Methyldodecanol + +

134 C10 H14 15.835 1,2-Dimethyl-4-ethylbenzene + + +

170 C10 H18 O2 15.956 Linalool oxide + + +

172 C10 H20 O2 16.051 3-(Hydroxymethyl)-2-nonanone +

228 C13 H24 O3 16.23 Carbonic acid, nonyl prop-1-en-2-yl ester +

Continued...
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Table 3: Cont’d.

Molecular Mass Molecular Formula R.Time Name M W E

154  C10 H18 O 16.351 Linalool + + +

170 C12 H26 16.468 4-Methylundecane + + +

140 C10 H20  16.544 1-Ethyl-1,4-dimethylcyclohexane + +

156 C11 H24 16.636 6-Ethyl-2-methyloctane +

134 C10 H14 16.786 3,7,7-Trimethyl-1,3,5-cycloheptatriene + +

134 C10 H14 16.913 p-Cymene + + +

156 C10 H20 O 17.233 1-Methyl-4-(1-methylethyl)cyclohexanol + +

156 C10 H20 O 17.402 Neoisocarquejanol +

152 C10 H16 O 17.491 4(10)-Thujen-3-ol + +

184 C11 H20 O2 17.56 2,2,6,6-Tetramethyl-3,5-heptanedione + + +

166 C12 H22 18.036 1-Hexyl-1-cyclohexene +

154 C10 H18 O 18.327 cis-2-Norbornanol + +

144 C8 H16 O2 18.47 Octanoic acid +

170 C10 H10 O2 18.565 trans-Linalool 3,7-oxide +

168 C12 H24 18.663 4,6,8-Trimethyl-1-nonene + +

130 C8 H18 O 18.913 2,5-Dimethyl-2-hexanol + +

154 C10 H18 O 19.05 .alpha.-Terpineol + + +

152 C10 H16 O 19.283 Myrtenol + +

156 C10 H20 O 19.559 5-Methyl-3-propyl-2-hexanone + +

134 C9 H10 O 19.695 2-methyl-2-phenyl-oxirane + + +

156 C11 H24 19.803 2,3,7-Trimethyloctane + +

184 C13 H28  20.032  4,8-dimethyl-undecane + +

196 C12 H20 O2 20.155 Nerol acetate +

184 C13 H28 20.445 3,3,5-trimethyl-decane + +

252 C17 H32 O 20.675 13-Heptadecyn-1-ol +

296 C20 H40 O 20.683 Phytol +

232 C15 H20 O2 20.784 2,2,3,3-Tetramethylcyclopropanecarboxylic acid, 4-methylphenyl ester + +

234 C15 H22 O2 20.951 polygodial + + +

184 C13 H28 21.082 4-methyl-dodecane + +

158 C9 H18 O2 21.235 Nonanoic acid + + +

114 C8 H18 21.698 3,3-Dimethylhexane + +

188 C10 H20 O3 21.83 Butyl butoxyacetate + + +

198 C14 H30   22.083 4,6-Dimethyldodecane + +

150 C10 H14 O 22.165 (2E,3Z)-2-Ethylidene-6-methyl-3,5-heptadienal + +

222 C16 H30 22.408 (2-Cyclohexyl-1-methylpropyl)cyclohexane + +

140 C9 H16 O 22.708 2,3,4,5-Tetramethylcyclopent-2-en-1-ol + + +

194 C12 H18 O2 22.876 2-Pinen-10-ol, acetate +

212 C15 H32 22.955 2,6,11-Trimethyldodecane + + +

158 C10 H22 O 23.215 2-Propyl-1-heptanol +

168 C12 H24 23.473 4-Methyl-1-undecene +

286 C16 H30 O4 23.619 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate $$ Propanoic acid, 2-methyl-, 
2,2-dimethyl-1-(1-methylethyl)-1,3-propanediyl ester + +

Continued...
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Continued...

Table 3: Cont’d.

Molecular Mass Molecular Formula R.Time Name M W E

164 C10 H12 O2 23.686 p-Eugenol + +

180 C10 H12 O3 24.01 beta.-Phenyllactic acid methyl ester +

216 C12 H24 O3 24.17 Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester + + +

241 C13 H23 NO3 24.305 4-t-Butyl-2-(1-methyl-2-nitroethyl)cyclohexanone + +

204 C15 H24 24.344 .alpha.-Cubebene +

180 C12 H20 O 24.456 4a,5-Dimethyloctahydro-2(1H)-naphthalenone + +

210 C14 H26 O 24.68 (6Z)-3,7-Dimethyl-6,11-dodecadien-1-ol + + +

204 C15 H24 24.773 Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1.alpha.,2.
beta.,4.beta.)]- +

204 C15 H24 25.34 (-)-Aristolene +

226 C14 H26 O2 25.385 2,4,7,9-Tetramethyl-5-decyne-4,7-diol +

204 C15 H24 25.636 Caryophyllene +

202 C15 H22 25.887 (3R,4aS,8aS)-8a-Methyl-5-methylene-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,8a-
octahydronaphthalene +

204 C15 H24 26.114 Zingiberene +

204 C15 H24 26.228 .alpha.-Guaiene +

220 C15 H24 O 26.75 (1R,2R,4S,6S,7S,8S)-8-Isopropyl-1-methyl-3-methylenetricyclo[4.4.0.02,7]
decan-4-ol +

166 C11 H18 O 26.78 Homomyrtenol +

204 C15 H24 27.021 Aromandendrene +

204 C15 H24 27.45 Guaia-6,9-diene +

166 C10 H14 O2 27.572 Cyclopentaneacetaldehyde, 2-formyl-3-methyl-.alpha.-methylene- + +

202 C15 H22 27.75 Curcumene + +

154 C10 H18 O 28.013 Isogeraniol + + +

220 C15 H24 O 28.174 (2S,3S,6S)-6-Isopropyl-3-methyl-2-(prop-1-en-2-yl)-3-vinylcyclohexanone +

204 C15 H24 28.508 4,5-di-epi-aristolochene +

202 C15 H22 28.689 (3R,4aS,8aS)-8a-Methyl-5-methylene-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,8a-
octahydronaphthalene +

206 C14 H22 O 28.858 3,5-Di-tert-butylphenol + + +

166 C10 H14 O2 29.455 2-(1-Formylvinyl)-5-methylcyclopentanecarbaldehyde + +

220 C15 H24 O 29.465 Caryophyllene oxide + + +

334 C22 H38 O2 30.136 Undec-10-ynoic acid, undec-2-en-1-yl ester + + +

222 C15 H26 O 30.361 Cubenol + +

264 C17 H28 O2 30.811 Nerolidyl acetate +

222 C15 H26 O 30.984 Ledol +

302 C20 H30 O2 31.235 cis-5,8,11,14,17-Eicosapentaenoic acid + +

220 C15 H24 O 31.255 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-,  
[1ar-(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.alpha.)]- +

328 C22 H32 O2 31.405 cis-4,7,10,13,16,19-Docosahexanoic acid + +

220 C15 H24 O 31.425 2-((2R,4aR,8aS)-4a-Methyl-8-methylenedecahydronaphthalen-2-yl)prop-2-
en-1-ol +

208 C15 H28   31.657 Selinan + +

222 C15 H26 O 31.79 Guaiol +

360 C24 H40 O2 31.905 Undec-10-ynoic acid, tridec-2-yn-1-yl ester + +

252 C17 H32 O 32.313 14-Methyl-8-hexadecyn-1-ol + + +
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Table 3: Cont’d.

Molecular Mass Molecular Formula R.Time Name M W E

204 C15 H24 32.394 Guaia-6,9-diene + + +

220 C15 H24 O 32.569 Dehydroxy-isocalamendiol + +

222 C15 H26 O 32.595 Guai-1(10)-en-11-ol +

220 C15 H24 O 32.73 (-)-Spathulenol + + +

222 C15 H26 O 32.91 1-Naphthalenol, 1,2,3,4,4a,7,8,8a-octahy +

222 C15 H26 O 33.007 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-
methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)]- +

240 C15 H28 O2 33.075 Cryptomeridiol +

152 C10 H16 O 33.243 2,4,6-Trimethyl-3-cyclohexene-1-carboxaldehyde + +

204 C15 H24 33.355 1H-3a,7-Methanoazulene, 2,3,6,7,8,8a-hexahydro-1,4,9,9-tetramethyl-, 
(1.alpha.,3a.alpha.,7.alpha.,8a.beta.)- +

168 C11 H20 O 33.867 (2,2,6-Trimethyl-bicyclo[4.1.0]hept-1-yl)-methanol + +

220 C15 H24 O 34.293 Caryophyllene oxide + + +

204 C15 H24 34.44 Longicyclene + +

222 C15 H26 O 34.598 1H-Cycloprop[e]azulen-4-ol, decahydro-1,1,4,7-tetramethyl-, [1ar-(1a.
alpha.,4.alpha.,4a.beta.,7.alpha.,7a.beta.,7b.alpha.)]- + +

238 C15 H26 O2 34.75 Isocalamenediol + +

220 C15 H24 O 34.857 Longifolenealdehyde +

218 C15 H22 O 34.925 ,6,6-Trimethyl-2-(3-methylbuta-1,3-dienyl)-3-oxatricyclo[5.1.0.0(2,4)]octane +

290 C20 H34 O 34.989 Copalol + +

222 C15 H26 O 35.145 Drim-7-en-11-ol + +

124 C9 H16  35.274 (2E,4E)-6,6-Dimethyl-2,4-heptadiene +

152 C10 H16 O 35.724 trans-Verbenol +

222 C15 H26 O 35.849 Drimenol + +

270 C17 H34 O2 35.92 Isopropyl myristate

180 C12 H20 O 35.961 2,2,6,8-Tetramethyl-7-oxatricyclo[6.1.0.0(1,6)]nonane + +

206 C15 H26  36.268 Tricyclo[4.3.0.0(7,9)]nonane, 2,2,5,5,8,8-hexamethyl-, (1.alpha.,6.beta.,7.
alpha.,9.alpha.)- +

278 C16 H22 O4 36.47 Diisobutyl phthalate +

206 C14 H22 O 36.636 Norpatchoulenol + +

270 C17 H34 O2 37.19 Methyl 14-methylpentadecanoate +

334 C20 H30 O4 37.62 Butyl octyl phthalate + +

152 C10 H16 O 38.18 cis-Chrysanthenol + +

206 C15 H26 38.396 Patchoulane + +

280 C18 H32 O2 39.042 cis,cis-Linoleic acid +

296 C19 H36 O2 39.101 Methyl elaidate +

234 C15 H22 O2 39.265 Drinenin + +

284 C18 H36 O2 39.349 Methyl isoheptadecanoate +

+ indicates the presence of the listed compound in the indicated extract.

To further quantify the effect of toxin concentration on the induction of 
mortality, the extracts were serially diluted in artificial seawater to test 

across a range of concentrations in the Artemia nauplii bioassay. Table 2 
shows the LC50 values of the extracts towards A. franciscana. LC50 values 
>1000 µg/mL towards Artemia nauplii have been defined as being non-
toxic.21 Based on these results, all extracts tested were deemed nontoxic.  
Optimised GC-MS parameters were developed and used to examine  
the T. lanceolata berry extracts. The resultant gas chromatograms are 

presented in Figure 3. Numerous overlapping peaks were evident in the 
aqueous berry extract chromatogram (Figure 3a). A total of 79 peaks 
were detected in the aqueous T. lanceolata berry extract, with the peak  
eluting at 20.9 min being the most prominent. Comparison with a  
phytochemical library putatively identified this peak as the sesquiterpenoid  
polygodial (Table 3). Numerous overlapping peaks were also evident 
throughout the chromatogram, with a broad range of retention times  
between 10-40 min. The presence of peaks throughout the chromatogram  
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DISCUSSION
Whilst all the T. lanceolata extracts screened displayed potent C. perfringens  
growth inhibitory activity, the berry extracts generally had greater  
efficacy than the corresponding leaf extracts. Therefore, the berry extracts 
were further analysed to determine their phytochemical composition. 
An examination of the GC-MS headspace metabolomics profile analysis 
of the aqueous, methanolic, and ethyl acetate berry extracts highlights 
several interesting compounds. An obvious feature was the number 
and diversity of terpenoids present in all extracts. The monoterpoid  
α-terpineol, as well as the sequiterterpenoids polygodial and caryoph-
yllene oxide, was prevalent in all T. lanceolata berry extracts. Indeed,  
polygodial was the major compound detected in the methanolic and 
aqueous extracts (based on peak area). This agrees with previous studies  
which frequently cite polygodial as a major component in T. lanceolata 
berries (6). Indeed, some studies have reported that polygodial may  
account for nearly 40 % of commercial T. lanceolata essential oil  
components.22

The bacterial growth inhibitory activity of polygodial has been reported 
in several studies. Polygodial isolated from Warburgia salutaris was 
reported to be a potent inhibitor of the growth of a panel of bacteria.23 
Indeed, MIC’s of 12.5 µg/mL were reported for polygodial against Staph-
ylococcus aureus and Bacillus subtilis in that study. Whilst less potent, the 
same study also reported good growth inhibition for polygodial against 
Staphylococcus epidermidis, Micrococcus luteus, Escherichia coli and 
Klebsiella pneumoniae, with MIC values generally ≤100 µg/mL. Other 
studies have reported little or no antibacterial activity for polygodial 
against limited panels of bacteria, although many of these studies only 
tested at relatively low concentrations (100 µg/mL)).[24] In contrast, more 
recent studies have demonstrated good bactericidal activity against both 
Gram-positive and Gram-negative bacteria.25 Antifungal efficacy and 
mechanistic studies of polygodial have been more definitive, with several 
publications highlighting its potent fungicidal activity.24,26,27 Polygoidal 
appears to exert its antifungal activity by several mechanisms. It non-
specifically disrupts/denatures fungal integral membrane proteins by 
functioning as a non-ionic surfactant.25 It also readily reacts with amino  
acids (especially cysteine and aromatic amino acids), resulting in further  
denaturation. As an additional antifungal mechanism, polygoidal may 
permeate cells by diffusing across the cell membrane. Once inside the 
cell, polygoidal interacts with various intracellular components and 
affects metabolic processes. It is possible that polygodial also interacts 
with bacterial cells in a similar way.
The monoterpene α-terpineol was also a common component across 
all T. lanceolata extracts. It is generally believed that monoterpenoids 
have the most potent broad spectrum bacterial inhibitory activity of all 
terpenoids compounds, and that this activity is closely linked to their 
lipophilic character.28 A variety of monoterpenoids including α-terpineol 
have been shown to have potent antibacterial activity against a panel of 
Gram-positive and Gram-negative bacteria.28,29 The small, hydrophobic  
nature of monoterpenoids allow them to insert into cytosolic membranes,  
altering the fluidity and permeability of the membrane, thereby changing  
the conformation and function of membrane proteins. This consequently  
interrupts crucial cellular processes including the respiratory chain. 
Furthermore, the cytoplasmic membrane comprises a cellular barrier 
to protons and larger ions.30 Interestingly, bacteria respond to monoter-
penoid exposure by modulating membrane fluidity.31 Despite this, the 
specific antimicrobial mechanisms of monoterpenoids are not yet fully 
understood. 
Interestingly, the non-specific growth inhibitory mechanism of mono-
terpenoids is inherently difficult for bacteria to counteract/develop 
resistance to. Indeed, to the best of our knowledge, no bacteria have yet 

attest to the wide range of compounds of widely varying polarity 
extracted with water.
The methanolic berry extract GC-MS chromatogram (Figure 3b) was 
more complex than the aqueous extract chromatogram. Indeed, a total 
of 129 peaks were detected in this chromatogram, with major peaks at 
approximately 14.1, 15.1, 16.4, 19.1, 21.0, 31.3, 31.8 and 35.0 min. As for 
the aqueous extract, polygodial (eluting at approximately 21 min) was a 
major component. In addition, a further major peak was evident in the  
methanolic extract at approximately 16.5 min. A comparison the phyto
chemical database putatively identified this peak as linalool (Table 3). 
This compound was also present in the aqueous extract, albeit at a much 
lower level. Numerous overlapping peaks were also evident throughout 
the chromatogram, many at retention times corresponding to peaks in 
the aqueous extract. This indicates that methanol and water extracted  
many similar components, although many of the lower polarity compounds  
appear to be more effectively extracted into methanol than water Fewer 
peaks were evident in the ethyl acetate extract chromatogram (Figure 
3c). Indeed, only 61 unique mass signals were detected in the ethyl 
acetate extract. As for the other extracts, polygodial was detected in the 
ethyl acetate berry extract, albeit in substantially lower levels. The ethyl  
acetate chromatogram also had a major peak present at 19.7 min, which  
was putatively identified as 2-methyl-2-phenyl-oxirane. Whilst this  
compound was also detected in both the aqueous and methanolic 
extracts it was only present in relative abundance in the ethyl acetate 
extract. Multiple other peaks were also noted in the ethyl acetate extract, 
many corresponding to peaks in the aqueous and methanolic extracts. 
However, several peaks in this extract were at different retention times 
than seen for the more polar methanolic and aqueous extracts. 
In total, 156 unique mass signals were noted for the T. lanceolata berry 
extracts by GC-MS headspace analysis (Table 3). Empirical formulas  
and putative identifications were achieved for these compounds by  
comparison against a GC-MS mass and spectral database. A noteable 
feature of the GC-MS analyses is the diversity of terpenoids compounds  
noted in the T. lanceolata extracts. The monoterpenoids linalool oxide 
(16 min), linalool (16.4 min), cymene (16.9 min), α-terpineol (19.1 min)  
and isogeraniol (28 min) as well as the sesquiterpenoids polygodial  
(21 min), caryophyllene oxide (29.5 and 34.3 min) guania-6,9-diene 
(32.4 min), spathulenol (32.7 min) were present in all extracts. However,  
multiple other terpenoids were present in some but not all extracts. The 
sesquiterpenoid polygodial was present in all extracts (at approximately 
21 min) as either the major peak, or one of the largest peaks. A further  
two sesquiterpenoids were also putatively identified as isomers of caryo-
phyllene oxide. The GC-MS headspace analysis was unable to distinguish  
which of these isomers corresponded to each peak. One isomer was 
assumed to be caryophyllene oxide whilst the other compound was  
assumed to be the structural isomer humulene. Several aliphatic keto- 
compounds were also detected. Of these, 4-methyl-2-heptanone (11.2 min),  
1,1,3,3-tetramethylcyclopentane (11.7 min), 6-methyl-5-hepten-2-one 
(12.7 min) and 2,2,6,6-tetramethyl-3,5-heptanedione (17.6 min) were 
present in all extracts. Similarly, the aliphatic compounds dodecane 
(13.2 min), 4-methylunadecane (16.5 min), nonanoic acid (21.2 min), 
butyl butoxyacetate (21.8 min), 2,6,11-trimethyldodecane (23 min), 
(6Z)-3,7-dimethyl-6,11-dodecadien-1-ol (24.7 min), undec-10-ynoic 
acid-undec-2-en-1-yl ester (30.1 min) and the aliphatic ester propanoic 
acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester (24.2 min) were 
also present in all T. lanceolata berry extracts. Similarly, the benzene 
derivatives cumene (13.9 min), 1,2-dimethyl-4-ethylbenzene (15.8 min),  
2-methyl-2-phenyl-oxirane (20 min) and 3,5-di-tert-butylphenol  
(28.9 min), were also present in all the berry extracts.
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•	 When aldehyde or alcohol moieties are present, the bactericidal 
activity is increased substantially, possibly via protein degradation, 
solvating or dehydrating effects.

Similarly, other studies have also reported good antibacterial activity for 
other monoterpenoids. Eugenol causes bacterial cell wall degradation.33  
Cymene induces swelling of the cytoplasmic membrane, resulting in 
bacterial death.34 Carvone dissipates the transmembrane pH gradient 
and cell potential, thus disrupting general metabolic function.35 Cinna-
maldehyde is a potent inhibitor of E. coli and Salmonella typhimurium 
growth.36 It is believed that the cinnamaldehyde carbonyl group has 
affinity for bacterial decarboxylases, preventing their function.37

Several sesquiterpenoids including α-cubenene (Figure 5a), caryophyllene  
(Figure 5b), zingiberene (Figure 5c), α-guaiene (Figure 5d), cubenol 
(Figure 5e), ledol (Figure 5f), spathulenol (Figure 5g), guaiol (Figure 5h),  
guai-1(10)-en-11-ol (Figure 5i), longicyclene (Figure 5j), isocalamenediol  
(Figure 5k), longifolenealdehyde (Figure 5l) were also present in the  
T. lanceolata berry extracts. The potent antibacterial activity of sesqui-
terpenoid lactones isolated from red algae (Laurencia spp.) has been 
reported, with MIC values 10-40 µg/mL against Chromobacterium  
violaceum, Erwinia spp., two Proteus species. and two Vibrio species.[38]  
Whilst less potent, good growth inhibitory activity has also been 
reported for selina-4,11(13)-dien-3-on-12-oic acid isolated from Varthemia  
iphionoides against Bacillus cereus, B. subtilis, E. coli, Micrococcus luteus, 
Salmonella enteritides and S. aureus.39 However, the sesquiterpenoids 
are generally considered to be less potent bacterial growth inhibitors 
than the monoterpenoids.38 Instead, the sesquiterpenoids appear to  
exert their antibacterial activities through interactions with other phyto
chemicals. The sesquiterpenoids nerolidol, farnesol, bisabolol and  
apritone have been reported to enhance the susceptibility of bacteria to 
other antibiotic compounds, possibly by increasing the permeability of 
the bacterial membrane to those compounds.40 Thus, as well as having  
moderate growth inhibitory activity themselves, it is likely that the  
T. lanceolata sesquiterpenoids enhance the activity of the other anti
bacterial compounds in the extracts. Whilst reports of antibacterial 
activity are lacking for many of the other sesquiterpenoids, some have 
been identified in bacterial growth inhibitory plant extracts.41-45 

developed resistance to any monoterpenoid. Furthermore, as mono-
terpenoids are generally used in mixtures (extracts, essential oils), it is 
likely that several growth inhibitory compounds, perhaps with multiple 
growth inhibitory mechanisms, are used concurrently. This not only  
enhances the antibacterial efficacy, but also greatly decreases the likelihood 
of bacteria developing resistance.
A number of other terpenoids were also detected in the T. lanceolata  
berry extracts by GC-MS headspace analysis. Monoterpenoids were  
particularly prevalent, with 2,2,6-trimethyl-6-vinyltetrahydropyran  
(geraniol, Figure 4a), cineole (Figure 4b), α-pinene (Figure 4c), 
β-ocimene (Figure 4d), cymene (Figure 4e), linalool oxide (Figure 4f), 
linalool (Figure 4g), dihydro-γ-terpineol (Figure 4h), 4(10)-thujen-3-ol  
(sabinol) (Figure 4i), trans-linalool-3,7-oxide (Figure 4j), myrtenol  
(Figure 4k), p-eugenol (Figure 4l), homomyrtenol (Figure 4m), aroman
dendrene (Figure 4n) and isogeraniol (Figure 4o) detected in the  
T. lanceolata berry extracts. The bacterial growth inhibitory properties of 
many of these monoterpenoids have been extensively documented. One  
study reported noteworthy antibacterial activity for multiple monoterpe-
noids including α-terpineol, geraniol, cineole, α-pinene, linalool, sabinene  
and eugenol against an extended panel of bacteria.32 Both Gram-positive 
and Gram-negative bacteria were susceptible, although the susceptibility  
varied widely between bacterial species. Unfortunately, that study did 
not report MIC values, making it difficult to compare efficacies with 
other compounds in other studies. However, the study was particularly 
interesting as the authors correlated the inhibitory activity of the mono-
terpenoids with their structures: 
•	 Generally, terpenoids with a phenolic structure are more highly 

active than non-phenolic terpenoids.
•	 The presence of a hydroxyl group further enhances the potency of 

the terpenoids.
•	 The position of the hydroxyl group also influences the growth 

inhibitory potency of the terpenoids.
•	 Alkyl substitutions reduce the surface tension, altering polarity and 

subsequently altering bacterial selectivity.
•	 The addition of an acetate moiety further enhances antibacterial 

efficacy.

Figure 4: Monoterpenoid components which were detected in the  
T. lanceolata berry extracts by GC-MS headspace analysis: (a) geraniol, 
(b), cineole (c), α-pinene, (d) β-ocimene, (e) p-cymene, (f ) linalool oxide, 
(g) linalool, (h) dihydro-γ-terpineol, (i) sabinol, (j) trans-linalool-3,7-oxide, 
(k) myrtenol, (l) p-eugenol, (m) homomyrtenol, (n) aromandendrene 
and (o) isogeraniol.

Figure 5: Sesquiterpenoid components detected in the T. lanceolata 
berry extracts by GC-MS headspace analysis: (a) α-cubenene, (b) 
caryophyllene, (c) zingiberene, (d) α-guaiene, (e) cubenol, (f ) ledol, 
(g) spathulenol, (h) guaiol, (i) guai-1(10)-en-11-ol, (j) longicyclene, (k) 
isocalamenediol and (l) longifolenealdehyde.
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DOI: 10.3390/molecules191117773; PMid:25372394.

30.  Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D. Interaction  
of four monoterpenes contained in essential oils with model membranes: impli-
cations for their antibacterial activity. J Agric Food Chem. 2007;55(15):6300-8. 
https://doi.org/10.1021/jf070094x PMid:17602646.

31.  Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acid 
composition of microbial cells induced by addition of thymol, carvacrol, limo-
nene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem 
2006;54(7):2745-9. DOI: 10.1021/jf052722l; PMid:16569070.

32.  Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial  
activity of plant volatile oils. J Appl Microbiol. 2000;88(2):308-16. DOI: 
10.1046/j.1365-2672.2000.00969.x

33.  Thoroski J, Blank G, Bilideris C. Eugenol induced inhibition of extracellular  
enzyme production by Bacillus cereus. J Food Prot. 1989;52(6):399-403. DOI: 
10.4315/0362-028X-52.6.399. 

34.  Ultee A, Bennink MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol 
is essential for action against the food-borne pathogen Bacillus cereus. Appl 
Environ Microbiol. 2002;68(4):1561-8. DOI: 10.1128/AEM.68.4.1561-1568.2002; 
PMid:11916669 PMCid:PMC123826.

35.  Oosterhaven K, Poolman B, Smid EJ. S-carvone as a natural potato sprout inhib-
iting, fungistatic and bacteriostatic compound. Ind Crops Prod. 1995;4(1):23-31. 
DOI: 10.1016/0926-6690(95)00007-Y. 

36.  Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, 
Gorris LGM, von Wright A. Characterization of the action of selected essential 
components on gram-negative bacteria. J Agric Food Chem. 1998;46(9):3590-5. 
DOI: 10.1021/jf980154m.

37.  Wendakoon CN, Sakaguchi M. Inhibition of amino acid decarboxylase activity  
in Enterobacter aerogenes by active compounds in spices. J Food Prot. 

Our study demonstrates that T. lanceolata berry extracts contain a variety 
of different compounds which may contribute to the C. perfringens growth  
inhibitory activity. Furthermore, a comparison between the metabolomics  
profiles of the extracts has highlighted several compounds of interest. 
However, it is unlikely that any single molecule is solely responsible for 
the T. lanceolata berry C. perfringens growth inhibitory activity. Instead,  
it is more likely that several compounds contribute to this activity.  
Furthermore, it is possible that synergistic interactions between the  
various bioactive components may be potentiating the growth inhibitory 
activity of the individual components, increasing their efficacy. At the 
very least, the presence of numerous molecules with growth inhibitory 
activity indicates that these extracts are likely to function by pluripotent 
pathways. Further studies are warranted to test the activity of the phyto-
chemical compounds, both individually and in combinations.
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		 GRAPHICAL ABSTRACT HIGHLIGHTS OF PAPER

•	 T. lanceolata berry and leaf extracts were potent inhibitors 
of C. perfringens growth (MIC values generally <1000 µg/mL).

•	 T. lanceolata berry extracts were particularly potent with 
MICs of 654, 65 and 329 µg/mL for the aqueous, metha-
nolic and ethyl acetate extracts respectively. 

•	 The aqueous, methanolic and ethyl acetate leaf extracts 
were also good growth inhibitors, with MICs of 839, 1255 
and 625 µg/mL respectively.

•	 All T. lanceolata extracts were non-toxic in the Artemia  
nauplii assay.

•	 GC-MS metabolomic profiling of the berry extracts high-
lighted a diversity of terpenoids compounds.
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